FileMood

Download Natural Language Processing

Natural Language Processing

Name

Natural Language Processing

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.2 GB

Total Files

102

Last Seen

Hash

9AD3C282FF6C4137ED8B073D884EA3D72C2E4CD1

/

1 - 1 - Course Introduction (14_11).mp4

12.9 MB

10 - 1 - What is Relation Extraction_ (9_47).mp4

10.7 MB

10 - 2 - Using Patterns to Extract Relations (6_17).mp4

6.4 MB

10 - 3 - Supervised Relation Extraction (10_51).mp4

10.8 MB

10 - 4 - Semi-Supervised and Unsupervised Relation Extraction (9_53).mp4

10.6 MB

11 - 1 - The Maximum Entropy Model Presentation (12_14).mp4

18.1 MB

11 - 2 - Feature Overlap_Feature Interaction (12_51).mp4

13.2 MB

11 - 3 - Conditional Maxent Models for Classification (4_11).mp4

5.0 MB

11 - 4 - Smoothing_Regularization_Priors for Maxent Models (29_24).mp4

30.2 MB

12 - 1 - An Intro to Parts of Speech and POS Tagging (13_19).mp4

12.5 MB

12 - 2 - Some Methods and Results on Sequence Models for POS Tagging (13_04).mp4

13.4 MB

13 - 1 - Syntactic Structure_ Constituency vs Dependency (8_46).mp4

9.4 MB

13 - 2 - Empirical_Data-Driven Approach to Parsing (7_11).mp4

7.6 MB

13 - 3 - The Exponential Problem in Parsing (14_30).mp4

15.6 MB

14 - 1 - Instructor Chat (9_02).mp4

24.9 MB

15 - 1 - CFGs and PCFGs (15_29).mp4

17.5 MB

15 - 2 - Grammar Transforms (12_05).mp4

12.6 MB

15 - 3 - CKY Parsing (23_25).mp4

27.5 MB

15 - 4 - CKY Example (21_52).mp4

24.6 MB

15 - 5 - Constituency Parser Evaluation (9_45).mp4

11.2 MB

16 - 1 - Lexicalization of PCFGs (7_03).mp4

7.5 MB

16 - 2 - Charniak_'s Model (18_23).mp4

19.9 MB

16 - 3 - PCFG Independence Assumptions (9_44).mp4

10.3 MB

16 - 4 - The Return of Unlexicalized PCFGs (20_53).mp4

22.2 MB

16 - 5 - Latent Variable PCFGs (12_07).mp4

13.2 MB

17 - 1 - Dependency Parsing Introduction (10_25).mp4

11.7 MB

17 - 2 - Greedy Transition-Based Parsing (31_05).mp4

32.9 MB

17 - 3 - Dependencies Encode Relational Structure (7_20).mp4

7.6 MB

18 - 1 - Introduction to Information Retrieval (9_16).mp4

9.5 MB

18 - 2 - Term-Document Incidence Matrices (8_59).mp4

9.5 MB

18 - 3 - The Inverted Index (10_42).mp4

11.2 MB

18 - 4 - Query Processing with the Inverted Index (6_43).mp4

7.1 MB

18 - 5 - Phrase Queries and Positional Indexes (19_45).mp4

21.6 MB

19 - 1 - Introducing Ranked Retrieval (4_27).mp4

4.8 MB

19 - 2 - Scoring with the Jaccard Coefficient (5_06).mp4

5.7 MB

19 - 3 - Term Frequency Weighting (5_59).mp4

6.7 MB

19 - 4 - Inverse Document Frequency Weighting (10_16).mp4

11.7 MB

19 - 5 - TF-IDF Weighting (3_42).mp4

4.3 MB

19 - 6 - The Vector Space Model (16_22).mp4

17.8 MB

19 - 7 - Calculating TF-IDF Cosine Scores (12_47).mp4

13.9 MB

19 - 8 - Evaluating Search Engines (9_02).mp4

9.2 MB

2 - 1 - Regular Expressions (11_25).mp4

11.4 MB

2 - 2 - Regular Expressions in Practical NLP (6_04).mp4

8.4 MB

2 - 3 - Word Tokenization (14_26).mp4

13.1 MB

2 - 4 - Word Normalization and Stemming (11_47).mp4

10.6 MB

2 - 5 - Sentence Segmentation (5_31).mp4

5.2 MB

20 - 1 - Word Senses and Word Relations (11_50).mp4

15.6 MB

20 - 2 - WordNet and Other Online Thesauri (6_23).mp4

9.2 MB

20 - 3 - Word Similarity and Thesaurus Methods (16_17).mp4

21.2 MB

20 - 4 - Word Similarity_ Distributional Similarity I (13_14).mp4

15.8 MB

20 - 5 - Word Similarity_ Distributional Similarity II (8_15).mp4

9.9 MB

21 - 1 - What is Question Answering_ (7_28).mp4

9.3 MB

21 - 2 - Answer Types and Query Formulation (8_47).mp4

10.6 MB

21 - 3 - Passage Retrieval and Answer Extraction (6_38).mp4

8.1 MB

21 - 4 - Using Knowledge in QA (4_25).mp4

5.5 MB

21 - 5 - Advanced_ Answering Complex Questions (4_52).mp4

6.5 MB

22 - 1 - Introduction to Summarization.mp4

6.3 MB

22 - 2 - Generating Snippets.mp4

10.1 MB

22 - 3 - Evaluating Summaries_ ROUGE.mp4

6.8 MB

22 - 4 - Summarizing Multiple Documents.mp4

14.1 MB

23 - 1 - Instructor Chat II (5_23).mp4

19.5 MB

3 - 1 - Defining Minimum Edit Distance (7_04).mp4

6.9 MB

3 - 2 - Computing Minimum Edit Distance (5_54).mp4

5.6 MB

3 - 3 - Backtrace for Computing Alignments (5_55).mp4

5.8 MB

3 - 4 - Weighted Minimum Edit Distance (2_47).mp4

3.0 MB

3 - 5 - Minimum Edit Distance in Computational Biology (9_29).mp4

9.4 MB

4 - 1 - Introduction to N-grams (8_41).mp4

8.0 MB

4 - 2 - Estimating N-gram Probabilities (9_38).mp4

9.9 MB

4 - 3 - Evaluation and Perplexity (11_09).mp4

10.1 MB

4 - 4 - Generalization and Zeros (5_15).mp4

4.9 MB

4 - 5 - Smoothing_ Add-One (6_30).mp4

6.3 MB

4 - 6 - Interpolation (10_25).mp4

9.8 MB

4 - 7 - Good-Turing Smoothing (15_35).mp4

14.1 MB

4 - 8 - Kneser-Ney Smoothing (8_59).mp4

8.8 MB

5 - 1 - The Spelling Correction Task (5_39).mp4

5.1 MB

5 - 2 - The Noisy Channel Model of Spelling (19_30).mp4

18.7 MB

5 - 3 - Real-Word Spelling Correction (9_19).mp4

9.0 MB

5 - 4 - State of the Art Systems (7_10).mp4

6.9 MB

6 - 1 - What is Text Classification_ (8_12).mp4

8.1 MB

6 - 2 - Naive Bayes (3_19).mp4

3.4 MB

6 - 3 - Formalizing the Naive Bayes Classifier (9_28).mp4

8.6 MB

6 - 4 - Naive Bayes_ Learning (5_22).mp4

6.5 MB

6 - 5 - Naive Bayes_ Relationship to Language Modeling (4_35).mp4

4.3 MB

6 - 6 - Multinomial Naive Bayes_ A Worked Example (8_58).mp4

11.9 MB

6 - 7 - Precision, Recall, and the F measure (16_16).mp4

16.5 MB

6 - 8 - Text Classification_ Evaluation (7_17).mp4

12.1 MB

6 - 9 - Practical Issues in Text Classification (5_56).mp4

6.9 MB

7 - 1 - What is Sentiment Analysis_ (7_17).mp4

10.0 MB

7 - 2 - Sentiment Analysis_ A baseline algorithm (13_27).mp4

13.8 MB

7 - 3 - Sentiment Lexicons (8_37).mp4

11.1 MB

7 - 4 - Learning Sentiment Lexicons (14_45).mp4

19.6 MB

7 - 5 - Other Sentiment Tasks (11_01).mp4

15.2 MB

8 - 1 - Generative vs. Discriminative Models (7_49).mp4

8.3 MB

8 - 2 - Making features from text for discriminative NLP models (18_11).mp4

17.5 MB

8 - 3 - Feature-Based Linear Classifiers (13_34).mp4

14.1 MB

8 - 4 - Building a Maxent Model_ The Nuts and Bolts (8_04).mp4

8.2 MB

8 - 5 - Generative vs. Discriminative models_ The problem of overcounting evidence (12_15).mp4

12.8 MB

8 - 6 - Maximizing the Likelihood (10_29).mp4

10.3 MB

9 - 1 - Introduction to Information Extraction (9_18).mp4

9.8 MB

9 - 2 - Evaluation of Named Entity Recognition (6_34).mp4

7.1 MB

9 - 3 - Sequence Models for Named Entity Recognition (15_05).mp4

14.8 MB

9 - 4 - Maximum Entropy Sequence Models (13_01).mp4

13.9 MB

 

Total files 102


Copyright © 2026 FileMood.com