FileMood

Download Natural Language Processing Fundamentals Techniques, Tools, and Applications

Natural Language Processing Fundamentals Techniques Tools and Applications

Name

Natural Language Processing Fundamentals Techniques, Tools, and Applications

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.1 GB

Total Files

45

Hash

14EC94C6FA7B5CFC87C42FA1504560536AE821C3

/Module 2 Text Processing and Feature Engineering/

003. Lesson 2.3 Use Case Who Wrote it Authorship Attribution with Heuristic NLP.mp4

130.0 MB

001. Lesson 2.1 Preprocessing Techniques.en.srt

16.2 KB

001. Lesson 2.1 Preprocessing Techniques.mp4

62.7 MB

002. Lesson 2.2 Feature Engineering Techniques.en.srt

20.5 KB

002. Lesson 2.2 Feature Engineering Techniques.mp4

70.5 MB

003. Lesson 2.3 Use Case Who Wrote it Authorship Attribution with Heuristic NLP.en.srt

22.4 KB

/Module 0 Course Introduction/

001. Course Introduction.mp4

30.2 MB

001. Course Introduction.en.srt

7.5 KB

/Module 1 Introduction to Linguistics, NLP and Related Platforms/

001. Lesson 1.1 What is Linguistics.en.srt

14.0 KB

001. Lesson 1.1 What is Linguistics.mp4

49.5 MB

002. Lesson 1.2 What is Natural Language Processing.en.srt

15.0 KB

002. Lesson 1.2 What is Natural Language Processing.mp4

48.7 MB

003. Lesson 1.3 Major Platforms and Packages Used in this Course.en.srt

8.0 KB

003. Lesson 1.3 Major Platforms and Packages Used in this Course.mp4

52.7 MB

/Module 3 Traditional NLP Models/

001. Lesson 3.1 Probabilistic Models.en.srt

20.5 KB

001. Lesson 3.1 Probabilistic Models.mp4

77.5 MB

002. Lesson 3.2 Introduction to Neural Networks in NLP.en.srt

16.1 KB

002. Lesson 3.2 Introduction to Neural Networks in NLP.mp4

60.4 MB

003. Lesson 3.3 Use Case Text Classification with Naive Bayes.en.srt

12.3 KB

003. Lesson 3.3 Use Case Text Classification with Naive Bayes.mp4

61.0 MB

/Module 4 Advanced NLP Models/

001. Lesson 4.1 Attention Mechanism and Transformers.en.srt

12.0 KB

001. Lesson 4.1 Attention Mechanism and Transformers.mp4

47.4 MB

002. Lesson 4.2 Task-Specific Transformer Models and Fine-Tuning.en.srt

15.2 KB

002. Lesson 4.2 Task-Specific Transformer Models and Fine-Tuning.mp4

57.8 MB

003. Lesson 4.3 Large Language Models (LLMs).en.srt

19.1 KB

003. Lesson 4.3 Large Language Models (LLMs).mp4

63.9 MB

004. Lesson 4.4 Use Case Fine-tuning a Sentiment Analysis Classifier with DistilBERT.en.srt

20.6 KB

004. Lesson 4.4 Use Case Fine-tuning a Sentiment Analysis Classifier with DistilBERT.mp4

115.6 MB

/Module 5 Beyond the NLP Model/

001. Lesson 5.1 Ethical Considerations.en.srt

14.6 KB

001. Lesson 5.1 Ethical Considerations.mp4

43.5 MB

002. Lesson 5.2 MLOps and LLMOps.en.srt

13.7 KB

002. Lesson 5.2 MLOps and LLMOps.mp4

46.0 MB

003. Lesson 5.3 Use Case Build Your Own Retrieval-Augmented Generation (RAG) System.en.srt

15.6 KB

003. Lesson 5.3 Use Case Build Your Own Retrieval-Augmented Generation (RAG) System.mp4

85.7 MB

004. Lesson 5.4 Course Closing.en.srt

3.5 KB

004. Lesson 5.4 Course Closing.mp4

15.7 MB

/z.nlp-fundamentals-main/

0203_heuristic_nlp.ipynb

443.0 KB

0303_naive_bayes.ipynb

128.4 KB

0404_finetuning_transformers.ipynb

256.3 KB

0504_llms_and_rag.ipynb

121.8 KB

README.md

2.9 KB

/graphics/

cosine_similarity.png

23.0 KB

llm.png

25.7 KB

rag.png

112.6 KB

transformer_architecture.png

80.7 KB

 

Total files 45


Copyright © 2025 FileMood.com