FileMood

Download Neural Networks for Machine Learning

Neural Networks for Machine Learning

Name

Neural Networks for Machine Learning

 DOWNLOAD Copy Link

Total Size

964.3 MB

Total Files

243

Hash

2D49241CF9A689583FE2352EAB62AD3025A3E42F

/.../0804 Echo state network - Scholarpedia_files/

1088796616-postmessagerelay.js

5.1 KB

400px-FreqGenTestOverlay.png

39.9 KB

500px-FreqGenSchema.png

73.5 KB

88x31.png

5.5 KB

badge.gif

3.7 KB

cb=gapi.loaded_0

100.5 KB

cb=gapi.loaded_1

51.4 KB

core-rpc-shindig.random-shindig.sha1.js

68.1 KB

facebook.png

0.5 KB

fastbutton.htm

47.4 KB

ga.js

40.0 KB

gplus-16.png

0.5 KB

linkedin.png

0.6 KB

load(1).php

154.2 KB

load(2).php

3.4 KB

load(3).php

0.4 KB

load(4).php

68.1 KB

load(5).php

12.7 KB

load(6).php

152.2 KB

load.php

10.3 KB

magnify-clip.png

0.2 KB

MathJax.js

58.8 KB

photo.jpg

0.4 KB

plusone.js

33.6 KB

postmessageRelay.htm

12.7 KB

poweredby_mediawiki_88x31.png

3.6 KB

search-ltr.png

0.6 KB

twitter.png

43.4 KB

/.../1105 Boltzmann machine - Scholarpedia_files/

1088796616-postmessagerelay.js

5.1 KB

88x31.png

5.5 KB

badge.gif

3.7 KB

cb=gapi.loaded_0

100.5 KB

cb=gapi.loaded_1

51.4 KB

core-rpc-shindig.random-shindig.sha1.js

68.1 KB

facebook.png

0.5 KB

fastbutton.htm

47.4 KB

ga.js

40.0 KB

gplus-16.png

0.5 KB

linkedin.png

0.6 KB

load(1).php

154.2 KB

load(2).php

3.4 KB

load(3).php

0.4 KB

load(4).php

68.1 KB

load(5).php

12.7 KB

load(6).php

152.2 KB

load.php

10.3 KB

MathJax.js

58.8 KB

photo.jpg

0.4 KB

plusone.js

33.6 KB

postmessageRelay.htm

12.7 KB

poweredby_mediawiki_88x31.png

3.6 KB

search-ltr.png

0.6 KB

twitter.png

43.4 KB

/Info/

0304 reading_list-Learning representations by back-propagating errors.pdf

3.1 MB

0404 reading_list-Neural probabilisic language models.pdf

140.1 KB

0405 images-Lecture4-turian.png

154.4 KB

0504 reading_list-Convolutional networks for images, speech, and time series.pdf

125.4 KB

0504 reading_list-Gradient-based learning applied to document recognition.pdf

955.1 KB

0705 reading_list-A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks.pdf

320.6 KB

0803 reading_list-Generating Text with Recurrent Neural Networks.pdf

273.4 KB

0804 Echo state network - Scholarpedia.htm

318.9 KB

1002 reading_list-Adaptive mixtures of local experts.pdf

271.1 KB

1005 reading_list-Improving neural networks by preventing co-adaptation of feature detectors.pdf

1.7 MB

1105 Boltzmann machine - Scholarpedia.htm

295.9 KB

1303 reading_list-Connectionist learning of belief networks.pdf

2.4 MB

1304 reading_list-- algorithm for unsupervised neural networks.pdf

261.5 KB

1401 reading_list-A fast learning algorithm for deep belief nets.pdf

787.8 KB

1401 reading_list-Self-taught learning- transfer learning from unlabeled data.pdf

484.9 KB

1401 reading_list-To recognize shapes, first learn to generate images.pdf

513.9 KB

1504 reading_list-Semantic Hashing.pdf

641.6 KB

1505 reading_list-Using Very Deep Autoencoders for Content-Based Image Retrieval.pdf

759.2 KB

/Slides/

lecture_slides-lec1.pdf

4.1 MB

lecture_slides-lec10.pdf

847.1 KB

lecture_slides-lec11.pdf

711.2 KB

lecture_slides-lec12.pdf

1.8 MB

lecture_slides-lec13.pdf

314.6 KB

lecture_slides-lec14.pdf

1.2 MB

lecture_slides-lec15.pdf

2.6 MB

lecture_slides-lec16.pdf

346.9 KB

lecture_slides-lec2.pdf

504.8 KB

lecture_slides-lec3.pdf

548.0 KB

lecture_slides-lec4.pdf

964.1 KB

lecture_slides-lec5.pdf

1.6 MB

lecture_slides-lec6.pdf

546.8 KB

lecture_slides-lec7.pdf

976.0 KB

lecture_slides-lec8.pdf

658.3 KB

lecture_slides-lec9.pdf

719.0 KB

/

0101 Why do we need machine learning_.mp4

15.8 MB

0101 Why do we need machine learning_.srt

18.8 KB

0102 What are neural networks_.mp4

10.2 MB

0102 What are neural networks_.srt

11.8 KB

0103 Some simple models of neurons.mp4

9.7 MB

0103 Some simple models of neurons.srt

11.0 KB

0104 A simple example of learning.mp4

6.9 MB

0104 A simple example of learning.srt

7.2 KB

0105 Three types of learning.mp4

9.4 MB

0105 Three types of learning.srt

10.6 KB

0201 Types of neural network architectures.mp4

9.2 MB

0201 Types of neural network architectures.srt

10.1 KB

0202 Perceptrons_ The first generation of neural networks.mp4

10.3 MB

0202 Perceptrons_ The first generation of neural networks.srt

11.1 KB

0203 A geometrical view of perceptrons.mp4

7.7 MB

0203 A geometrical view of perceptrons.srt

8.5 KB

0204 Why the learning works.mp4

6.2 MB

0204 Why the learning works.srt

6.6 KB

0205 What perceptrons can_t do.mp4

17.4 MB

0205 What perceptrons can_t do.srt

18.9 KB

0301 Learning the weights of a linear neuron.mp4

14.2 MB

0301 Learning the weights of a linear neuron.srt

15.5 KB

0302 The error surface for a linear neuron.mp4

6.2 MB

0302 The error surface for a linear neuron.srt

6.5 KB

0303 Learning the weights of a logistic output neuron.mp4

4.6 MB

0303 Learning the weights of a logistic output neuron.srt

4.6 KB

0304 The backpropagation algorithm.mp4

14.0 MB

0304 The backpropagation algorithm.srt

15.2 KB

0305 Using the derivatives computed by backpropagation.mp4

11.7 MB

0305 Using the derivatives computed by backpropagation.srt

13.9 KB

0401 Learning to predict the next word.mp4

15.0 MB

0401 Learning to predict the next word.srt

16.9 KB

0402 A brief diversion into cognitive science.mp4

5.6 MB

0402 A brief diversion into cognitive science.srt

5.9 KB

0403 Another diversion_ The softmax output function.mp4

8.4 MB

0403 Another diversion_ The softmax output function.srt

9.3 KB

0404 Neuro-probabilistic language models.mp4

9.4 MB

0404 Neuro-probabilistic language models.srt

11.0 KB

0405 Ways to deal with the large number of possible outputs.mp4

14.9 MB

0405 Ways to deal with the large number of possible outputs.srt

18.6 KB

0501 Why object recognition is difficult.mp4

5.6 MB

0501 Why object recognition is difficult.srt

6.3 KB

0502 Achieving viewpoint invariance.mp4

7.2 MB

0502 Achieving viewpoint invariance.srt

8.3 KB

0503 Convolutional nets for digit recognition.mp4

19.4 MB

0503 Convolutional nets for digit recognition.srt

22.1 KB

0504 Convolutional nets for object recognition.mp4

24.1 MB

0504 Convolutional nets for object recognition.srt

26.2 KB

0601 Overview of mini-batch gradient descent.mp4

10.1 MB

0601 Overview of mini-batch gradient descent.srt

12.2 KB

0602 A bag of tricks for mini-batch gradient descent.mp4

15.6 MB

0602 A bag of tricks for mini-batch gradient descent.srt

19.2 KB

0603 The momentum method.mp4

10.2 MB

0603 The momentum method.srt

11.4 KB

0604 Adaptive learning rates for each connection.mp4

7.0 MB

0604 Adaptive learning rates for each connection.srt

7.9 KB

0605 Rmsprop_ Divide the gradient by a running average of its recent magnitude.mp4

15.9 MB

0605 Rmsprop_ Divide the gradient by a running average of its recent magnitude.srt

16.1 KB

0701 Modeling sequences_ A brief overview.mp4

21.1 MB

0701 Modeling sequences_ A brief overview.srt

23.2 KB

0702 Training RNNs with back propagation.mp4

7.7 MB

0702 Training RNNs with back propagation.srt

8.6 KB

0703 A toy example of training an RNN.mp4

7.6 MB

0703 A toy example of training an RNN.srt

7.7 KB

0704 Why it is difficult to train an RNN.mp4

9.3 MB

0704 Why it is difficult to train an RNN.srt

10.0 KB

0705 Long-term Short-term-memory.mp4

10.7 MB

0705 Long-term Short-term-memory.srt

11.9 KB

0801 A brief overview of Hessian Free optimization.mp4

17.0 MB

0801 A brief overview of Hessian Free optimization.srt

18.4 KB

0802 Modeling character strings with multiplicative connections.mp4

17.4 MB

0802 Modeling character strings with multiplicative connections.srt

17.9 KB

0803 Learning to predict the next character using HF.mp4

14.6 MB

0803 Learning to predict the next character using HF.srt

16.1 KB

0804 Echo State Networks.mp4

11.8 MB

0804 Echo State Networks.srt

12.3 KB

0901 Overview of ways to improve generalization.mp4

14.2 MB

0901 Overview of ways to improve generalization.srt

16.2 KB

0902 Limiting the size of the weights.mp4

7.7 MB

0902 Limiting the size of the weights.srt

8.6 KB

0903 Using noise as a regularizer.mp4

8.9 MB

0903 Using noise as a regularizer.srt

9.1 KB

0904 Introduction to the full Bayesian approach.mp4

12.6 MB

0904 Introduction to the full Bayesian approach.srt

13.5 KB

0905 The Bayesian interpretation of weight decay.mp4

12.9 MB

0905 The Bayesian interpretation of weight decay.srt

13.3 KB

0906 MacKay_s quick and dirty method of setting weight costs.mp4

4.6 MB

0906 MacKay_s quick and dirty method of setting weight costs.srt

4.5 KB

1001 Why it helps to combine models.mp4

15.9 MB

1001 Why it helps to combine models.srt

18.1 KB

1002 Mixtures of Experts.mp4

15.7 MB

1002 Mixtures of Experts.srt

17.5 KB

1003 The idea of full Bayesian learning.mp4

8.8 MB

1003 The idea of full Bayesian learning.srt

10.5 KB

1004 Making full Bayesian learning practical.mp4

8.5 MB

1004 Making full Bayesian learning practical.srt

8.7 KB

1005 Dropout.mp4

10.2 MB

1005 Dropout.srt

12.0 KB

1101 Hopfield Nets.mp4

15.4 MB

1101 Hopfield Nets.srt

16.8 KB

1102 Dealing with spurious minima.mp4

13.4 MB

1102 Dealing with spurious minima.srt

15.2 KB

1103 Hopfield nets with hidden units.mp4

11.9 MB

1103 Hopfield nets with hidden units.srt

12.6 KB

1104 Using stochastic units to improv search.mp4

12.3 MB

1104 Using stochastic units to improv search.srt

14.3 KB

1105 How a Boltzmann machine models data.mp4

13.9 MB

1105 How a Boltzmann machine models data.srt

16.3 KB

1201 Boltzmann machine learning.mp4

14.7 MB

1201 Boltzmann machine learning.srt

16.4 KB

1202 OPTIONAL VIDEO_ More efficient ways to get the statistics.mp4

17.8 MB

1202 OPTIONAL VIDEO_ More efficient ways to get the statistics.srt

18.7 KB

1203 Restricted Boltzmann Machines.mp4

13.3 MB

1203 Restricted Boltzmann Machines.srt

13.9 KB

1204 An example of RBM learning.mp4

9.1 MB

1204 An example of RBM learning.srt

10.1 KB

1205 RBMs for collaborative filtering.mp4

10.0 MB

1205 RBMs for collaborative filtering.srt

10.9 KB

1301 The ups and downs of back propagation.mp4

12.4 MB

1301 The ups and downs of back propagation.srt

14.0 KB

1302 Belief Nets.mp4

15.6 MB

1302 Belief Nets.srt

17.8 KB

1303 Learning sigmoid belief nets.mp4

14.9 MB

1303 Learning sigmoid belief nets.srt

15.0 KB

1304 The wake-sleep algorithm.mp4

16.4 MB

1304 The wake-sleep algorithm.srt

17.8 KB

1401 Learning layers of features by stacking RBMs.mp4

21.0 MB

1401 Learning layers of features by stacking RBMs.srt

23.4 KB

1402 Discriminative learning for DBNs.mp4

11.8 MB

1402 Discriminative learning for DBNs.srt

13.0 KB

1403 What happens during discriminative fine-tuning_.mp4

10.7 MB

1403 What happens during discriminative fine-tuning_.srt

10.9 KB

1404 Modeling real-valued data with an RBM.mp4

11.7 MB

1404 Modeling real-valued data with an RBM.srt

12.4 KB

1405 OPTIONAL VIDEO_ RBMs are infinite sigmoid belief nets.mp4

20.4 MB

1405 OPTIONAL VIDEO_ RBMs are infinite sigmoid belief nets.srt

22.2 KB

1501 From PCA to autoencoders.mp4

10.2 MB

1501 From PCA to autoencoders.srt

10.5 KB

1502 Deep auto encoders.mp4

5.2 MB

1502 Deep auto encoders.srt

5.5 KB

1503 Deep auto encoders for document retrieval.mp4

10.7 MB

1503 Deep auto encoders for document retrieval.srt

10.8 KB

1504 Semantic Hashing.mp4

11.5 MB

1504 Semantic Hashing.srt

11.6 KB

1505 Learning binary codes for image retrieval.mp4

12.1 MB

1505 Learning binary codes for image retrieval.srt

13.2 KB

1506 Shallow autoencoders for pre-training.mp4

8.7 MB

1506 Shallow autoencoders for pre-training.srt

10.3 KB

1601 OPTIONAL_ Learning a joint model of images and captions.mp4

14.5 MB

1601 OPTIONAL_ Learning a joint model of images and captions.srt

10.6 KB

1602 OPTIONAL_ Hierarchical Coordinate Frames.mp4

11.7 MB

1602 OPTIONAL_ Hierarchical Coordinate Frames.srt

13.7 KB

1603 OPTIONAL_ Bayesian optimization of hyper-parameters.mp4

16.6 MB

1603 OPTIONAL_ Bayesian optimization of hyper-parameters.srt

19.0 KB

1604 OPTIONAL_ The fog of progress.mp4

2.9 MB

1604 OPTIONAL_ The fog of progress.srt

3.6 KB

 

Total files 243


Copyright © 2024 FileMood.com