FileMood

Download Neural Networks for Machine Learning

Neural Networks for Machine Learning

Name

Neural Networks for Machine Learning

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

927.5 MB

Total Files

79

Hash

C44EA3E669C895B7EF510B09CA044C03B500DC8F

/

5 - 4 - Convolutional nets for object recognition [17min].mp4

24.1 MB

7 - 1 - Modeling sequences A brief overview.mp4

21.1 MB

14 - 1 - Learning layers of features by stacking RBMs [17 min].mp4

21.0 MB

14 - 5 - OPTIONAL VIDEO RBMs are infinite sigmoid belief nets [17 mins].mp4

20.4 MB

5 - 3 - Convolutional nets for digit recognition [16 min].mp4

19.4 MB

12 - 2 - OPTIONAL VIDEO More efficient ways to get the statistics [15 mins].mp4

17.8 MB

2 - 5 - What perceptrons cant do [15 min].mp4

17.4 MB

8 - 2 - Modeling character strings with multiplicative connections [14 mins].mp4

17.4 MB

8 - 1 - A brief overview of Hessian Free optimization.mp4

17.0 MB

16 - 3 - OPTIONAL Bayesian optimization of hyper-parameters [13 min].mp4

16.6 MB

13 - 4 - The wake-sleep algorithm [13 min].mp4

16.4 MB

10 - 1 - Why it helps to combine models [13 min].mp4

15.9 MB

6 - 5 - Rmsprop Divide the gradient by a running average of its recent magnitude.mp4

15.9 MB

1 - 1 - Why do we need machine learning [13 min].mp4

15.8 MB

10 - 2 - Mixtures of Experts [13 min].mp4

15.7 MB

6 - 2 - A bag of tricks for mini-batch gradient descent.mp4

15.6 MB

13 - 2 - Belief Nets [13 min].mp4

15.6 MB

11 - 1 - Hopfield Nets [13 min].mp4

15.4 MB

4 - 1 - Learning to predict the next word [13 min].mp4

15.0 MB

4 - 5 - Ways to deal with the large number of possible outputs [15 min].mp4

14.9 MB

12 - 1 - Boltzmann machine learning [12 min].mp4

14.7 MB

8 - 3 - Learning to predict the next character using HF [12 mins].mp4

14.6 MB

16 - 1 - OPTIONAL Learning a joint model of images and captions [10 min].mp4

14.5 MB

13 - 3 - Learning sigmoid belief nets [12 min].mp4

14.3 MB

9 - 1 - Overview of ways to improve generalization [12 min].mp4

14.2 MB

3 - 1 - Learning the weights of a linear neuron [12 min].mp4

14.2 MB

3 - 4 - The backpropagation algorithm [12 min].mp4

14.0 MB

11 - 5 - How a Boltzmann machine models data [12 min].mp4

13.9 MB

11 - 2 - Dealing with spurious minima [11 min].mp4

13.4 MB

12 - 3 - Restricted Boltzmann Machines [11 min].mp4

13.3 MB

9 - 5 - The Bayesian interpretation of weight decay [11 min].mp4

12.9 MB

9 - 4 - Introduction to the full Bayesian approach [12 min].mp4

12.6 MB

13 - 1 - The ups and downs of back propagation [10 min].mp4

12.4 MB

11 - 4 - Using stochastic units to improv search [11 min].mp4

12.3 MB

15 - 5 - Learning binary codes for image retrieval [9 mins].mp4

12.1 MB

11 - 3 - Hopfield nets with hidden units [10 min].mp4

11.9 MB

14 - 2 - Discriminative learning for DBNs [9 mins].mp4

11.8 MB

8 - 4 - Echo State Networks [9 min].mp4

11.8 MB

14 - 4 - Modeling real-valued data with an RBM [10 mins].mp4

11.7 MB

16 - 2 - OPTIONAL Hierarchical Coordinate Frames [10 mins].mp4

11.7 MB

3 - 5 - Using the derivatives computed by backpropagation [10 min].mp4

11.7 MB

15 - 3 - Deep auto encoders for document retrieval [8 mins].mp4

10.7 MB

7 - 5 - Long-term Short-term-memory.mp4

10.7 MB

14 - 3 - What happens during discriminative fine-tuning [8 mins].mp4

10.7 MB

15 - 4 - Semantic Hashing [9 mins].mp4

10.5 MB

1 - 2 - What are neural networks [8 min].mp4

10.2 MB

6 - 3 - The momentum method.mp4

10.2 MB

10 - 5 - Dropout [9 min].mp4

10.2 MB

15 - 1 - From PCA to autoencoders [5 mins].mp4

10.2 MB

6 - 1 - Overview of mini-batch gradient descent.mp4

10.1 MB

12 - 5 - RBMs for collaborative filtering [8 mins].mp4

10.0 MB

2 - 2 - Perceptrons The first generation of neural networks [8 min].mp4

9.8 MB

1 - 3 - Some simple models of neurons [8 min].mp4

9.7 MB

1 - 5 - Three types of learning [8 min].mp4

9.4 MB

4 - 4 - Neuro-probabilistic language models [8 min].mp4

9.4 MB

7 - 4 - Why it is difficult to train an RNN.mp4

9.3 MB

2 - 1 - Types of neural network architectures [7 min].mp4

9.2 MB

12 - 4 - An example of RBM learning [7 mins].mp4

9.1 MB

9 - 3 - Using noise as a regularizer [7 min].mp4

8.9 MB

10 - 3 - The idea of full Bayesian learning [7 min].mp4

8.8 MB

15 - 6 - Shallow autoencoders for pre-training [7 mins].mp4

8.7 MB

10 - 4 - Making full Bayesian learning practical [7 min].mp4

8.5 MB

4 - 3 - Another diversion The softmax output function [7 min].mp4

8.4 MB

9 - 2 - Limiting the size of the weights [6 min].mp4

7.7 MB

7 - 2 - Training RNNs with back propagation.mp4

7.7 MB

2 - 3 - A geometrical view of perceptrons [6 min].mp4

7.7 MB

7 - 3 - A toy example of training an RNN.mp4

7.6 MB

5 - 2 - Achieving viewpoint invariance [6 min].mp4

7.2 MB

6 - 4 - Adaptive learning rates for each connection.mp4

7.0 MB

1 - 4 - A simple example of learning [6 min].mp4

6.9 MB

2 - 4 - Why the learning works [5 min].mp4

6.2 MB

3 - 2 - The error surface for a linear neuron [5 min].mp4

6.2 MB

5 - 1 - Why object recognition is difficult [5 min].mp4

5.6 MB

4 - 2 - A brief diversion into cognitive science [4 min].mp4

5.6 MB

15 - 2 - Deep auto encoders [4 mins].mp4

5.2 MB

9 - 6 - MacKays quick and dirty method of setting weight costs [4 min].mp4

4.6 MB

3 - 3 - Learning the weights of a logistic output neuron [4 min].mp4

4.6 MB

16 - 4 - OPTIONAL The fog of progress [3 min].mp4

2.9 MB

Neural Networks for Machine Learning.torrent

25.3 KB

 

Total files 79


Copyright © 2025 FileMood.com