FileMood

Download NLP Class Videos

NLP Class Videos

Name

NLP Class Videos

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.2 GB

Total Files

120

Hash

719A9FEA7EA5E1DEC8797B2C5614415A7D49A1DA

/

1 - 1 - Course Introduction (14:11).mp4

12.9 MB

/1. Basic Text Processing/

2 - 1 - Regular Expressions (11:25).mp4

11.4 MB

2 - 2 - Regular Expressions in Practical NLP (6:04).mp4

8.4 MB

2 - 3 - Word Tokenization (14:26).mp4

13.1 MB

2 - 4 - Word Normalization and Stemming (11:47).mp4

10.6 MB

2 - 5 - Sentence Segmentation (5:31).mp4

5.2 MB

/10. Parsing Intro/

13 - 1 - Syntactic Structure: Constituency vs Dependency (8:46).mp4

9.4 MB

13 - 2 - Empirical_Data-Driven Approach to Parsing (7:11).mp4

7.6 MB

13 - 3 - The Exponential Problem in Parsing (14:30).mp4

15.6 MB

/11. Probablistic Parsing/

15 - 1 - CFGs and PCFGs (15:29).mp4

17.5 MB

15 - 2 - Grammar Transforms (12:05).mp4

12.6 MB

15 - 3 - CKY Parsing (23:25).mp4

27.5 MB

15 - 4 - CKY Example (21:52).mp4

24.6 MB

15 - 5 - Constituency Parser Evaluation (9:45).mp4

11.2 MB

/12. Lexicalized Parsing/

16 - 1 - Lexicalization of PCFGs (7:03).mp4

7.5 MB

16 - 2 - Charniak's Model (18:23).mp4

19.9 MB

16 - 3 - PCFG Independence Assumptions (9:44).mp4

10.3 MB

16 - 4 - The Return of Unlexicalized PCFGs (20:53).mp4

22.2 MB

16 - 5 - Latent Variable PCFGs (12:07).mp4

13.2 MB

/13. Dependency Parsing (Optional)/

17 - 1 - Dependency Parsing Introduction (10:25).mp4

11.7 MB

17 - 2 - Greedy Transition-Based Parsing (31:05).mp4

32.9 MB

17 - 3 - Dependencies Encode Relational Structure (7:20).mp4

7.6 MB

/14. Information Retrieval/

18 - 1 - Introduction to Information Retrieval (9:16).mp4

9.5 MB

18 - 2 - Term-Document Incidence Matrices (8:59).mp4

9.5 MB

18 - 3 - The Inverted Index (10:42).mp4

11.2 MB

18 - 4 - Query Processing with the Inverted Index (6:43).mp4

7.1 MB

18 - 5 - Phrase Queries and Positional Indexes (19:45).mp4

21.6 MB

/15. Ranked Information Retrieval/

19 - 1 - Introducing Ranked Retrieval (4:27).mp4

4.8 MB

19 - 2 - Scoring with the Jaccard Coefficient (5:06).mp4

5.7 MB

19 - 3 - Term Frequency Weighting (5:59).mp4

6.7 MB

19 - 4 - Inverse Document Frequency Weighting (10:16).mp4

11.7 MB

19 - 5 - TF-IDF Weighting (3:42).mp4

4.3 MB

19 - 6 - The Vector Space Model (16:22).mp4

17.8 MB

19 - 7 - Calculating TF-IDF Cosine Scores (12:47).mp4

13.9 MB

19 - 8 - Evaluating Search Engines (9:02).mp4

9.2 MB

/16. Semantics/

20 - 1 - Word Senses and Word Relations (11:50).mp4

15.6 MB

20 - 2 - WordNet and Other Online Thesauri (6:23).mp4

9.2 MB

20 - 3 - Word Similarity and Thesaurus Methods (16:17).mp4

21.2 MB

20 - 4 - Word Similarity: Distributional Similarity I (13:14).mp4

15.8 MB

20 - 5 - Word Similarity: Distributional Similarity II (8:15).mp4

9.9 MB

/17. Sentiment Analysis/

7 - 1 - What is Sentiment Analysis? (7:17).mp4

10.0 MB

7 - 2 - Sentiment Analysis: A baseline algorithm (13:27).mp4

13.8 MB

7 - 3 - Sentiment Lexicons (8:37).mp4

11.1 MB

7 - 4 - Learning Sentiment Lexicons (14:45).mp4

19.6 MB

7 - 5 - Other Sentiment Tasks (11:01).mp4

15.2 MB

/18. Question Answering/

21 - 1 - What is Question Answering? (7:28).mp4

9.3 MB

21 - 2 - Answer Types and Query Formulation (8:47).mp4

10.6 MB

21 - 3 - Passage Retrieval and Answer Extraction (6:38).mp4

8.1 MB

21 - 4 - Using Knowledge in QA (4:25).mp4

5.5 MB

21 - 5 - Advanced: Answering Complex Questions (4:52).mp4

6.5 MB

/19. Summarization/

22 - 1 - Introduction to Summarization.mp4

6.3 MB

22 - 2 - Generating Snippets.mp4

10.1 MB

22 - 3 - Evaluating Summaries: ROUGE.mp4

6.8 MB

22 - 4 - Summarizing Multiple Documents.mp4

14.1 MB

/2. Edit Distance/

3 - 1 - Defining Minimum Edit Distance (7:04).mp4

6.9 MB

3 - 2 - Computing Minimum Edit Distance (5:54).mp4

5.6 MB

3 - 3 - Backtrace for Computing Alignments (5:55).mp4

5.8 MB

3 - 4 - Weighted Minimum Edit Distance (2:47).mp4

3.0 MB

3 - 5 - Minimum Edit Distance in Computational Biology (9:29).mp4

9.4 MB

/3. Language Modelling/

4 - 1 - Introduction to N-grams (8:41).mp4

8.0 MB

4 - 2 - Estimating N-gram Probabilities (9:38).mp4

9.9 MB

4 - 3 - Evaluation and Perplexity (11:09).mp4

10.1 MB

4 - 4 - Generalization and Zeros (5:15).mp4

4.9 MB

4 - 5 - Smoothing: Add-One (6:30).mp4

6.3 MB

4 - 6 - Interpolation (10:25).mp4

9.8 MB

4 - 7 - Good-Turing Smoothing (15:35).mp4

14.1 MB

4 - 8 - Kneser-Ney Smoothing (8:59).mp4

8.8 MB

/4. Spelling Correction/

5 - 1 - The Spelling Correction Task (5:39).mp4

5.1 MB

5 - 2 - The Noisy Channel Model of Spelling (19:30).mp4

18.7 MB

5 - 3 - Real-Word Spelling Correction (9:19).mp4

9.0 MB

5 - 4 - State of the Art Systems (7:10).mp4

6.9 MB

/5. Text Classification/

6 - 1 - What is Text Classification? (8:12).mp4

8.1 MB

6 - 2 - Naive Bayes (3:19).mp4

3.4 MB

6 - 3 - Formalizing the Naive Bayes Classifier (9:28).mp4

8.6 MB

6 - 4 - Naive Bayes: Learning (5:22).mp4

6.5 MB

6 - 5 - Naive Bayes: Relationship to Language Modeling (4:35).mp4

4.3 MB

6 - 6 - Multinomial Naive Bayes: A Worked Example (8:58).mp4

11.9 MB

6 - 7 - Precision, Recall, and the F measure (16:16).mp4

16.5 MB

6 - 8 - Text Classification: Evaluation (7:17).mp4

12.1 MB

6 - 9 - Practical Issues in Text Classification (5:56).mp4

6.9 MB

/6. Discriminative Classifiers: Max Entropy Classifiers/

8 - 1 - Generative vs. Discriminative Models (7:49).mp4

8.3 MB

8 - 2 - Making features from text for discriminative NLP models (18:11).mp4

17.5 MB

8 - 3 - Feature-Based Linear Classifiers (13:34).mp4

14.1 MB

8 - 4 - Building a Maxent Model: The Nuts and Bolts (8:04).mp4

8.2 MB

8 - 5 - Generative vs. Discriminative models: The problem of overcounting evidence (12:15).mp4

12.8 MB

8 - 6 - Maximizing the Likelihood (10:29).mp4

10.3 MB

/7. Named entity recognition and Maximum Entropy Sequence Models/

9 - 1 - Introduction to Information Extraction (9:18).mp4

9.8 MB

9 - 2 - Evaluation of Named Entity Recognition (6:34).mp4

7.1 MB

9 - 3 - Sequence Models for Named Entity Recognition (15:05).mp4

14.8 MB

9 - 4 - Maximum Entropy Sequence Models (13:01).mp4

13.9 MB

/8. Relation Extraction/

10 - 1 - What is Relation Extraction? (9:47).mp4

10.7 MB

10 - 2 - Using Patterns to Extract Relations (6:17).mp4

6.4 MB

10 - 3 - Supervised Relation Extraction (10:51).mp4

10.8 MB

10 - 4 - Semi-Supervised and Unsupervised Relation Extraction (9:53).mp4

10.6 MB

/9. Advanced Entropy Max Models/

11 - 1 - The Maximum Entropy Model Presentation (12:14).mp4

18.1 MB

11 - 2 - Feature Overlap_Feature Interaction (12:51).mp4

13.2 MB

11 - 3 - Conditional Maxent Models for Classification (4:11).mp4

5.0 MB

11 - 4 - Smoothing_Regularization_Priors for Maxent Models (29:24).mp4

30.2 MB

/9. POS Tagging/

12 - 1 - An Intro to Parts of Speech and POS Tagging (13:19).mp4

12.5 MB

12 - 2 - Some Methods and Results on Sequence Models for POS Tagging (13:04).mp4

13.4 MB

/Lecture Slides/

0.pdf

2.8 MB

1.pdf

896.4 KB

10.pdf

911.3 KB

11.pdf

1.2 MB

12.pdf

1.5 MB

13.pdf

900.2 KB

14.pdf

2.5 MB

15.pdf

2.3 MB

16.pdf

2.5 MB

17.pdf

1.9 MB

18.pdf

1.6 MB

19.pdf

1.5 MB

2.pdf

1.3 MB

3.pdf

2.2 MB

4.pdf

1.5 MB

5.pdf

1.8 MB

6.pdf

1.9 MB

7.pdf

1.0 MB

8.pdf

1.6 MB

9.pdf

717.0 KB

 

Total files 120


Copyright © 2025 FileMood.com