FileMood

Download OR72

OR72

Name

OR72

 DOWNLOAD Copy Link

Total Size

3.4 GB

Total Files

107

Hash

EBA7388B56262A397F36E239B5E8D9B68E21A54B

/

001 - Install Anaconda, course materials, and create movie recommendations!.mp4

92.4 MB

002 - Course Roadmap.mp4

72.6 MB

003 - Types of Recommenders.mp4

15.6 MB

004 - Understanding You through Implicit and Explicit Ratings.mp4

9.9 MB

005 - Top-N Recommender Architecture.mp4

17.3 MB

006 - Review the basics of recommender systems..mp4

12.4 MB

007 - The Basics of Python.mp4

44.0 MB

008 - Data Structures in Python.mp4

13.8 MB

009 - Functions in Python.mp4

7.0 MB

010 - Booleans, loops, and a hands-on challenge.mp4

7.7 MB

011 - Train_Test and Cross Validation.mp4

24.3 MB

012 - Accuracy Metrics (RMSE, MAE).mp4

49.0 MB

013 - Top-N Hit Rate - Many Ways.mp4

12.7 MB

014 - Coverage, Diversity, and Novelty.mp4

8.3 MB

015 - Churn, Responsiveness, and A_B Tests.mp4

86.7 MB

016 - Review ways to measure your recommender..mp4

10.5 MB

017 - Walkthrough of RecommenderMetrics.py.mp4

46.6 MB

018 - Walkthrough of TestMetrics.py.mp4

32.7 MB

019 - Measure the Performance of SVD Recommendations.mp4

14.6 MB

020 - Our Recommender Engine Architecture.mp4

20.0 MB

021 - Recommender Engine Walkthrough, Part 1.mp4

24.3 MB

022 - Recommender Engine Walkthrough, Part 2.mp4

23.1 MB

023 - Review the Results of our Algorithm Evaluation..mp4

17.8 MB

024 - Content-Based Recommendations, and the Cosine Similarity Metric.mp4

40.3 MB

025 - K-Nearest-Neighbors and Content Recs.mp4

15.6 MB

026 - Producing and Evaluating Content-Based Movie Recommendations.mp4

34.0 MB

027 - Bleeding Edge Alert! Mise en Scene Recommendations.mp4

35.5 MB

028 - Dive Deeper into Content-Based Recommendations.mp4

13.2 MB

029 - Measuring Similarity, and Sparsity.mp4

73.1 MB

030 - Similarity Metrics.mp4

16.3 MB

031 - User-based Collaborative Filtering.mp4

24.2 MB

032 - User-based Collaborative Filtering, Hands-On.mp4

32.0 MB

033 - Item-based Collaborative Filtering.mp4

64.6 MB

034 - Item-based Collaborative Filtering, Hands-On.mp4

19.8 MB

035 - Tuning Collaborative Filtering Algorithms.mp4

12.2 MB

036 - Evaluating Collaborative Filtering Systems Offline.mp4

12.9 MB

037 - Measure the Hit Rate of Item-Based Collaborative Filtering.mp4

5.1 MB

038 - KNN Recommenders.mp4

22.9 MB

039 - Running User and Item-Based KNN on MovieLens.mp4

20.6 MB

040 - Experiment with different KNN parameters..mp4

40.7 MB

041 - Bleeding Edge Alert! Translation-Based Recommendations.mp4

20.6 MB

042 - Principal Component Analysis (PCA).mp4

68.1 MB

043 - Singular Value Decomposition.mp4

13.7 MB

044 - Running SVD and SVD++ on MovieLens.mp4

28.7 MB

045 - Improving on SVD.mp4

12.0 MB

046 - Tune the hyperparameters on SVD.mp4

10.8 MB

047 - Bleeding Edge Alert! Sparse Linear Methods (SLIM).mp4

22.1 MB

048 - Deep Learning Introduction.mp4

23.9 MB

049 - Deep Learning Pre-Requisites.mp4

20.1 MB

050 - History of Artificial Neural Networks.mp4

49.1 MB

051 - [Activity] Playing with Tensorflow.mp4

122.6 MB

052 - Training Neural Networks.mp4

23.5 MB

053 - Tuning Neural Networks.mp4

17.0 MB

054 - Introduction to Tensorflow.mp4

54.0 MB

055 - [Activity] Handwriting Recognition with Tensorflow, part 1.mp4

112.8 MB

056 - [Activity] Handwriting Recognition with Tensorflow, part 2.mp4

31.7 MB

057 - Introduction to Keras.mp4

8.2 MB

058 - [Activity] Handwriting Recognition with Keras.mp4

56.8 MB

059 - Classifier Patterns with Keras.mp4

17.2 MB

060 - [Exercise] Predict Political Parties of Politicians with Keras.mp4

66.7 MB

061 - Intro to Convolutional Neural Networks (CNN's).mp4

46.3 MB

062 - CNN Architectures.mp4

11.0 MB

063 - [Activity] Handwriting Recognition with Convolutional Neural Networks (CNNs).mp4

54.3 MB

064 - Intro to Recurrent Neural Networks (RNN's).mp4

26.5 MB

065 - Training Recurrent Neural Networks.mp4

13.4 MB

066 - [Activity] Sentiment Analysis of Movie Reviews using RNN's and Keras.mp4

92.8 MB

067 - Intro to Deep Learning for Recommenders.mp4

58.7 MB

068 - Restricted Boltzmann Machines (RBM's).mp4

17.1 MB

069 - [Activity] Recommendations with RBM's, part 1.mp4

60.9 MB

070 - [Activity] Recommendations with RBM's, part 2.mp4

33.2 MB

071 - [Activity] Evaluating the RBM Recommender.mp4

24.4 MB

072 - [Exercise] Tuning Restricted Boltzmann Machines.mp4

56.3 MB

073 - Exercise Results - Tuning a RBM Recommender.mp4

7.4 MB

074 - Auto-Encoders for Recommendations - Deep Learning for Recs.mp4

14.7 MB

075 - [Activity] Recommendations with Deep Neural Networks.mp4

45.6 MB

076 - Clickstream Recommendations with RNN's.mp4

31.0 MB

077 - [Exercise] Get GRU4Rec Working on your Desktop.mp4

4.6 MB

078 - Exercise Results - GRU4Rec in Action.mp4

45.5 MB

079 - Bleeding Edge Alert! Deep Factorization Machines.mp4

46.5 MB

080 - More Emerging Tech to Watch.mp4

17.6 MB

081 - [Activity] Introduction and Installation of Apache Spark.mp4

42.0 MB

082 - Apache Spark Architecture.mp4

9.9 MB

083 - [Activity] Movie Recommendations with Spark, Matrix Factorization, and ALS.mp4

29.9 MB

084 - [Activity] Recommendations from 20 million ratings with Spark.mp4

34.2 MB

085 - Amazon DSSTNE.mp4

43.4 MB

086 - DSSTNE in Action.mp4

73.8 MB

087 - Scaling Up DSSTNE.mp4

5.5 MB

088 - AWS SageMaker and Factorization Machines.mp4

8.8 MB

089 - SageMaker in Action - Factorization Machines on one million ratings, in the cloud.mp4

51.0 MB

090 - The Cold Start Problem (and solutions).mp4

13.3 MB

091 - [Exercise] Implement Random Exploration.mp4

1.3 MB

092 - Exercise Solution - Random Exploration.mp4

20.4 MB

093 - Stoplists.mp4

10.8 MB

094 - [Exercise] Implement a Stoplist.mp4

768.4 KB

095 - Exercise Solution - Implement a Stoplist.mp4

18.5 MB

096 - Filter Bubbles, Trust, and Outliers.mp4

26.6 MB

097 - [Exercise] Identify and Eliminate Outlier Users.mp4

1.0 MB

098 - Exercise Solution - Outlier Removal.mp4

20.8 MB

099 - Fraud, the Perils of Clickstream, and International Concerns.mp4

76.3 MB

100 - Temporal Effects, and Value-Aware Recommendations.mp4

85.6 MB

101 - Case Study - YouTube, Part 1.mp4

16.5 MB

102 - Case Study - YouTube, Part 2.mp4

14.4 MB

103 - Case Study - Netflix, Part 1.mp4

15.0 MB

104 - Case Study - Netflix, Part 2.mp4

11.8 MB

105 - Hybrid Recommenders and Exercise.mp4

8.5 MB

106 - Exercise Solution - Hybrid Recommenders.mp4

23.6 MB

107 - More to Explore.mp4

64.9 MB

 

Total files 107


Copyright © 2024 FileMood.com