FileMood

Download PacktPub - Data Cleansing Master Class in Python

PacktPub Data Cleansing Master Class in Python

Name

PacktPub - Data Cleansing Master Class in Python

 DOWNLOAD Copy Link

Total Size

6.3 GB

Total Files

207

Last Seen

2024-11-07 01:22

Hash

542C9944D3404A8BABBF129A40E4E0982D996F97

/

Exercises Files.zip

311.7 KB

/.pad/

736848

736.8 KB

153574

153.6 KB

873062

873.1 KB

782810

782.8 KB

897414

897.4 KB

237919

237.9 KB

67333

67.3 KB

1026228

1.0 MB

306943

306.9 KB

683391

683.4 KB

930537

930.5 KB

851725

851.7 KB

355091

355.1 KB

566501

566.5 KB

395493

395.5 KB

901620

901.6 KB

761582

761.6 KB

84317

84.3 KB

113444

113.4 KB

811976

812.0 KB

461403

461.4 KB

627675

627.7 KB

352730

352.7 KB

917539

917.5 KB

848705

848.7 KB

906845

906.8 KB

223708

223.7 KB

342030

342.0 KB

2225

2.2 KB

338259

338.3 KB

819459

819.5 KB

1020280

1.0 MB

270981

271.0 KB

24755

24.8 KB

146780

146.8 KB

779464

779.5 KB

717787

717.8 KB

639658

639.7 KB

697727

697.7 KB

407005

407.0 KB

620841

620.8 KB

1020837

1.0 MB

928873

928.9 KB

126104

126.1 KB

738326

738.3 KB

369512

369.5 KB

1028594

1.0 MB

539781

539.8 KB

842348

842.3 KB

600149

600.1 KB

233595

233.6 KB

834432

834.4 KB

16481

16.5 KB

32073

32.1 KB

331623

331.6 KB

856348

856.3 KB

654842

654.8 KB

277880

277.9 KB

605900

605.9 KB

326111

326.1 KB

450945

450.9 KB

1016141

1.0 MB

831070

831.1 KB

382577

382.6 KB

428522

428.5 KB

873536

873.5 KB

892696

892.7 KB

489846

489.8 KB

1041423

1.0 MB

622970

623.0 KB

678321

678.3 KB

982018

982.0 KB

1010788

1.0 MB

783322

783.3 KB

522851

522.9 KB

538114

538.1 KB

420830

420.8 KB

98079

98.1 KB

367910

367.9 KB

1035088

1.0 MB

313564

313.6 KB

767547

767.5 KB

563078

563.1 KB

355303

355.3 KB

125449

125.4 KB

692284

692.3 KB

8885

8.9 KB

233879

233.9 KB

1021767

1.0 MB

140111

140.1 KB

786774

786.8 KB

606506

606.5 KB

814529

814.5 KB

707365

707.4 KB

492371

492.4 KB

593468

593.5 KB

97497

97.5 KB

649746

649.7 KB

60059

60.1 KB

706490

706.5 KB

531461

531.5 KB

774239

774.2 KB

937414

937.4 KB

/Section 1/

01.01-course_introduction.mkv

160.3 MB

01.02-course_structure.mkv

164.8 MB

01.03-is_this_course_right_for_you.mkv

4.5 MB

/Section 2/

02.01-introducing_data_preparation.mkv

290.6 MB

02.02-the_machine_learning_process.mkv

95.2 MB

02.03-data_preparation_defined.mkv

264.2 MB

02.04-choosing_a_data_preparation_technique.mkv

276.8 MB

02.05-what_is_data_in_machine_learning.mkv

79.4 MB

02.06-raw_data.mkv

121.0 MB

02.07-machine_learning_is_mostly_data_preparation.mkv

30.5 MB

02.08-common_data_preparation_tasks-data_cleansing.mkv

168.0 MB

02.09-common_data_preparation_tasks-feature_selection.mkv

54.2 MB

02.10-common_data_preparation_tasks-data_transforms.mkv

11.0 MB

02.11-common_data_preparation_tasks-feature_engineering.mkv

141.2 MB

02.12-common_data_preparation_tasks-dimensionality_reduction.mkv

9.6 MB

02.13-data_leakage.mkv

11.8 MB

02.14-problem_with_naive_data_preparation.mkv

149.9 MB

02.15-case_study_data_leakage_train__test__split_naive_approach.mkv

49.2 MB

02.16-case_study_data_leakage_train__test__split_correct_approach.mkv

28.5 MB

02.17-case_study_data_leakage_k-fold_naive_approach.mkv

41.5 MB

02.18-case_study_data_leakage_k-fold_correct_approach.mkv

37.1 MB

/Section 3/

03.01-data_cleansing_overview.mkv

167.4 MB

03.02-identify_columns_that_contain_a_single_value.mkv

19.0 MB

03.03-identify_columns_with_few_values.mkv

32.7 MB

03.04-remove_columns_with_low_variance.mkv

30.6 MB

03.05-identify_and_remove_rows_that_contain_duplicate_data.mkv

116.2 MB

03.06-defining_outliers.mkv

102.4 MB

03.07-remove_outliers-the_standard_deviation_approach.mkv

52.4 MB

03.08-remove_outliers-the_iqr_approach.mkv

42.7 MB

03.09-automatic_outlier_detection.mkv

52.7 MB

03.10-mark_missing_values.mkv

62.9 MB

03.11-remove_rows_with_missing_values.mkv

29.1 MB

03.12-statistical_imputation.mkv

6.3 MB

03.13-mean_value_imputation.mkv

43.9 MB

03.14-simple_imputer_with_model_evaluation.mkv

22.3 MB

03.15-compare_different_statistical_imputation_strategies.mkv

26.5 MB

03.16-k-nearest_neighbors_imputation.mkv

46.5 MB

03.17-knnimputer_and_model_evaluation.mkv

36.0 MB

03.18-iterative_imputation.mkv

39.4 MB

03.19-iterativeimputer_and_model_evaluation.mkv

19.3 MB

03.20-iterativeimputer_and_different_imputation_order.mkv

24.1 MB

/Section 4/

04.01-feature_selection_introduction.mkv

213.0 MB

04.02-feature_selection_defined.mkv

12.5 MB

04.03-statistics_for_feature_selection.mkv

109.4 MB

04.04-loading_a_categorical_dataset.mkv

29.0 MB

04.05-encode_the_dataset_for_modelling.mkv

26.2 MB

04.06-chi-squared.mkv

18.3 MB

04.07-mutual_information.mkv

19.1 MB

04.08-modeling_with_selected_categorical_features.mkv

39.2 MB

04.09-feature_selection_with_anova_on_numerical_input.mkv

43.8 MB

04.10-feature_selection_with_mutual_information.mkv

19.1 MB

04.11-modeling_with_selected_numerical_features.mkv

27.2 MB

04.12-tuning_a_number_of_selected_features.mkv

39.8 MB

04.13-select_features_for_numerical_output.mkv

23.8 MB

04.14-linear_correlation_with_correlation_statistics.mkv

27.5 MB

04.15-linear_correlation_with_mutual_information.mkv

30.8 MB

04.16-baseline_and_model_built_using_correlation.mkv

37.5 MB

04.17-model_built_using_mutual_information_features.mkv

12.0 MB

04.18-tuning_number_of_selected_features.mkv

57.3 MB

04.19-recursive_feature_elimination.mkv

185.1 MB

04.20-rfe_for_classification.mkv

53.5 MB

04.21-rfe_for_regression.mkv

27.5 MB

04.22-rfe_hyperparameters.mkv

34.2 MB

04.23-feature_ranking_for_rfe.mkv

31.0 MB

04.24-feature_importance_scores_defined.mkv

196.3 MB

04.25-feature_importance_scores_linear_regression.mkv

36.9 MB

04.26-feature_importance_scores_logistic_regression_and_cart.mkv

38.3 MB

04.27-feature_importance_scores_random_forests.mkv

17.8 MB

04.28-permutation_feature_importance.mkv

29.8 MB

04.29-feature_selection_with_importance.mkv

44.4 MB

/Section 5/

05.01-scale_numerical_data.mkv

11.6 MB

05.02-diabetes_dataset_for_scaling.mkv

24.2 MB

05.03-minmaxscaler_transform.mkv

25.4 MB

05.04-standardscaler_transform.mkv

29.9 MB

05.05-robust_scaling_data.mkv

44.6 MB

05.06-robust_scaler_applied_to_dataset.mkv

23.7 MB

05.07-explore_robust_scaler_range.mkv

15.6 MB

05.08-nominal_and_ordinal_variables.mkv

316.3 MB

05.09-ordinal_encoding.mkv

17.8 MB

05.10-one-hot_encoding_defined.mkv

3.9 MB

05.11-one-hot_encoding.mkv

18.1 MB

05.12-dummy_variable_encoding.mkv

18.3 MB

05.13-ordinal_encoder_transform_on_breast_cancer_dataset.mkv

47.9 MB

05.14-make_distributions_more_gaussian.mkv

9.3 MB

05.15-power_transform_on_contrived_dataset.mkv

22.4 MB

05.16-power_transform_on_sonar_dataset.mkv

30.4 MB

05.17-box-cox_on_sonar_dataset.mkv

33.3 MB

05.18-yeo-johnson_on_sonar_dataset.mkv

27.3 MB

05.19-polynomial_features.mkv

160.3 MB

05.20-effect_of_polynomial_degrees.mkv

20.2 MB

/Section 6/

06.01-transforming_different_data_types.mkv

24.6 MB

06.02-the_columntransformer.mkv

29.6 MB

06.03-the_columntransformer_on_abalone_dataset.mkv

37.0 MB

06.04-manually_transform_target_variable.mkv

25.7 MB

06.05-automatically_transform_target_variable.mkv

57.1 MB

06.06-challenge_of_preparing_new_data_for_a_model.mkv

258.9 MB

06.07-save_model_and_data_scaler.mkv

42.3 MB

06.08-load_and_apply_saved_scalers.mkv

18.8 MB

/Section 7/

07.01-curse_of_dimensionality.mkv

15.0 MB

07.02-techniques_for_dimensionality_reduction.mkv

102.2 MB

07.03-linear_discriminant_analysis.mkv

20.2 MB

07.04-linear_discriminant_analysis_demonstrated.mkv

51.5 MB

07.05-principal_component_analysis.mkv

62.7 MB

 

Total files 207


Copyright © 2024 FileMood.com