FileMood

Download pgm

Pgm

Name

pgm

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.5 GB

Total Files

186

Hash

5648D60C0AFCFD91C0987EC1891949D63F645DC6

/

19 - 1 - Maximum Likelihood for Log-Linear Models (28-47).mp4

36.3 MB

23 - 1 - Class Summary (24-38).mp4

33.8 MB

15 - 1 - Maximum Expected Utility (25-57).mp4

30.4 MB

20 - 6 - Learning General Graphs- Heuristic Search (23-36).mp4

28.1 MB

21 - 5 - Latent Variables (22-00).mp4

28.0 MB

3 - 2 - Temporal Models - DBNs (23-02).mp4

27.3 MB

6 - 6 - Log-Linear Models (22-08).mp4

27.0 MB

22 - 1 - Summary- Learning (20-11).mp4

26.9 MB

6 - 3 - Conditional Random Fields (22-22).mp4

26.3 MB

21 - 1 - Learning With Incomplete Data - Overview (21-34).mp4

26.1 MB

7 - 1 - Knowledge Engineering (23-05).mp4

25.9 MB

1 - 2 - Overview and Motivation (19-17).mp4

24.1 MB

20 - 4 - Bayesian Scores (20-35).mp4

23.7 MB

3 - 4 - Plate Models (20-08).mp4

23.6 MB

6 - 5 - I-maps and perfect maps (20-59).mp4

23.5 MB

2 - 5 - Independencies in Bayesian Networks (18-18).mp4

22.6 MB

18 - 5 - Bayesian Estimation for Bayesian Networks (17-02).mp4

22.2 MB

4 - 2 - Moving Data Around (16-07).mp4

21.8 MB

15 - 2 - Utility Functions (18-15).mp4

20.6 MB

2 - 1 - Semantics & Factorization (17-20).mp4

20.5 MB

15 - 3 - Value of Perfect Information (17-14).mp4

20.2 MB

6 - 2 - General Gibbs Distribution (15-52).mp4

19.9 MB

20 - 2 - Likelihood Scores (16-49).mp4

19.6 MB

18 - 3 - Bayesian Estimation (15-27).mp4

19.6 MB

21 - 2 - Expectation Maximization - Intro (16-17).mp4

18.9 MB

18 - 2 - Maximum Likelihood Estimation for Bayesian Networks (15-49).mp4

18.6 MB

4 - 1 - Basic Operations (13-59).mp4

18.6 MB

20 - 7 - Learning General Graphs- Search and Decomposability (15-46).mp4

18.5 MB

17 - 1 - Learning- Overview (15-35).mp4

18.4 MB

13 - 5 - Metropolis Hastings Algorithm (27-06).mp4

17.7 MB

4 - 5 - Control Statements- for, while, if statements (12-55).mp4

17.3 MB

18 - 4 - Bayesian Prediction (13-40).mp4

17.0 MB

4 - 6 - Vectorization (13-48).mp4

16.9 MB

5 - 2 - Tree-Structured CPDs (14-37).mp4

16.8 MB

5 - 3 - Independence of Causal Influence (13-08).mp4

16.6 MB

2 - 4 - Conditional Independence (12-38).mp4

16.3 MB

2 - 3 - Flow of Probabilistic Influence (14-36).mp4

16.2 MB

5 - 4 - Continuous Variables (13-25).mp4

16.1 MB

4 - 3 - Computing On Data (13-15).mp4

16.0 MB

18 - 1 - Maximum Likelihood Estimation (14-59).mp4

15.9 MB

19 - 2 - Maximum Likelihood for Conditional Random Fields (13-24).mp4

15.8 MB

20 - 5 - Learning Tree Structured Networks (12-05).mp4

15.2 MB

16 - 4 - Model Selection and Train Validation Test Sets (12-03).mp4

14.8 MB

13 - 1 - Simple Sampling (23-37).mp4

14.4 MB

3 - 3 - Temporal Models - HMMs (12-01).mp4

14.2 MB

14 - 1 - Inference in Temporal Models (19-43).mp4

14.2 MB

4 - 4 - Plotting Data (09-38).mp4

14.0 MB

9 - 1 - Belief Propagation (21-21).mp4

13.9 MB

10 - 7 - Loopy BP and Message Decoding (21-42).mp4

13.8 MB

21 - 3 - Analysis of EM Algorithm (11-32).mp4

13.5 MB

2 - 8 - Knowledge Engineering Example - SAMIAM (14-14).mp4

13.4 MB

21 - 4 - EM in Practice (11-17).mp4

13.3 MB

11 - 1 - Max Sum Message Passing (20-27).mp4

13.3 MB

16 - 6 - Regularization and Bias Variance (11-20).mp4

13.2 MB

6 - 1 - Pairwise Markov Networks (10-59).mp4

13.2 MB

20 - 3 - BIC and Asymptotic Consistency (11-26).mp4

13.1 MB

13 - 4 - Gibbs Sampling (19-26).mp4

13.1 MB

16 - 2 - Regularization- Cost Function (10-10).mp4

12.2 MB

3 - 1 - Overview of Template Models (10-55).mp4

12.1 MB

2 - 7 - Application - Medical Diagnosis (09-19).mp4

12.1 MB

19 - 3 - MAP Estimation for MRFs and CRFs (9-59).mp4

11.8 MB

12 - 2 - Dual Decomposition - Intuition (17-46).mp4

11.7 MB

16 - 1 - Regularization- The Problem of Overfitting (09-42).mp4

11.7 MB

8 - 3 - Variable Elimination Algorithm (16-17).mp4

11.6 MB

2 - 2 - Reasoning Patterns (09-59).mp4

11.3 MB

2 - 6 - Naive Bayes (09-52).mp4

11.2 MB

10 - 5 - Clique Trees and VE (16-17).mp4

11.1 MB

10 - 2 - Clique Tree Algorithm - Correctness (18-23).mp4

11.0 MB

6 - 7 - Shared Features in Log-Linear Models (08-28).mp4

10.5 MB

12 - 3 - Dual Decomposition - Algorithm (16-16).mp4

10.2 MB

9 - 2 - Properties of Cluster Graphs (15-00).mp4

10.2 MB

12 - 1 - Tractable MAP Problems (15-04).mp4

10.2 MB

5 - 1 - Overview- Structured CPDs (08-00).mp4

10.1 MB

8 - 5 - Graph-Based Perspective on Variable Elimination (15-25).mp4

10.0 MB

13 - 3 - Using a Markov Chain (15-27).mp4

10.0 MB

10 - 4 - Clique Trees and Independence (15-21).mp4

10.0 MB

13 - 2 - Markov Chain Monte Carlo (14-18).mp4

9.7 MB

10 - 6 - BP In Practice (15-38).mp4

9.6 MB

8 - 1 - Overview- Conditional Probability Queries (15-22).mp4

9.5 MB

16 - 5 - Diagnosing Bias vs Variance (07-42).mp4

9.4 MB

8 - 6 - Finding Elimination Orderings (11-58).mp4

9.2 MB

10 - 3 - Clique Tree Algorithm - Computation (16-18).mp4

9.1 MB

8 - 4 - Complexity of Variable Elimination (12-48).mp4

9.0 MB

16 - 3 - Evaluating a Hypothesis (07-35).mp4

8.9 MB

14 - 2 - Inference- Summary (12-45).mp4

8.2 MB

1 - 4 - Factors (06-40).mp4

7.7 MB

1 - 1 - Welcome! (05-35).mp4

7.5 MB

20 - 1 - Structure Learning Overview (5-49).mp4

7.0 MB

8 - 2 - Overview- MAP Inference (09-42).mp4

6.2 MB

6 - 4 - Independencies in Markov Networks (04-48).mp4

6.1 MB

1 - 3 - Distributions (04-56).mp4

6.1 MB

10 - 1 - Properties of Belief Propagation (9-31).mp4

6.0 MB

4 - 7 - Working on and Submitting Programming Exercises (03-33).mp4

5.8 MB

11 - 2 - Finding a MAP Assignment (3-57).mp4

2.8 MB

13 - 5 - Metropolis Hastings Algorithm (27-06).srt

33.2 KB

19 - 1 - Maximum Likelihood for Log-Linear Models (28-47).srt

31.7 KB

20 - 6 - Learning General Graphs- Heuristic Search (23-36).srt

31.0 KB

15 - 1 - Maximum Expected Utility (25-57).srt

30.6 KB

7 - 1 - Knowledge Engineering (23-05).srt

28.9 KB

10 - 7 - Loopy BP and Message Decoding (21-42).srt

27.2 KB

6 - 6 - Log-Linear Models (22-08).srt

27.2 KB

3 - 2 - Temporal Models - DBNs (23-02).srt

27.0 KB

13 - 1 - Simple Sampling (23-37).srt

26.9 KB

21 - 5 - Latent Variables (22-00).srt

25.9 KB

14 - 1 - Inference in Temporal Models (19-43).srt

25.4 KB

1 - 2 - Overview and Motivation (19-17).srt

25.3 KB

21 - 1 - Learning With Incomplete Data - Overview (21-34).srt

25.1 KB

9 - 1 - Belief Propagation (21-21).srt

24.4 KB

20 - 4 - Bayesian Scores (20-35).srt

24.4 KB

6 - 3 - Conditional Random Fields (22-22).srt

24.0 KB

3 - 4 - Plate Models (20-08).srt

23.9 KB

2 - 8 - Knowledge Engineering Example - SAMIAM (14-14).srt

23.6 KB

2 - 5 - Independencies in Bayesian Networks (18-18).srt

23.5 KB

6 - 5 - I-maps and perfect maps (20-59).srt

23.1 KB

11 - 1 - Max Sum Message Passing (20-27).srt

22.8 KB

15 - 3 - Value of Perfect Information (17-14).srt

22.2 KB

2 - 1 - Semantics & Factorization (17-20).srt

21.6 KB

15 - 2 - Utility Functions (18-15).srt

21.5 KB

10 - 2 - Clique Tree Algorithm - Correctness (18-23).srt

20.6 KB

21 - 2 - Expectation Maximization - Intro (16-17).srt

20.5 KB

12 - 2 - Dual Decomposition - Intuition (17-46).srt

20.1 KB

13 - 4 - Gibbs Sampling (19-26).srt

20.0 KB

17 - 1 - Learning- Overview (15-35).srt

19.9 KB

20 - 7 - Learning General Graphs- Search and Decomposability (15-46).srt

19.4 KB

12 - 1 - Tractable MAP Problems (15-04).srt

19.4 KB

18 - 5 - Bayesian Estimation for Bayesian Networks (17-02).srt

19.4 KB

20 - 2 - Likelihood Scores (16-49).srt

19.3 KB

4 - 2 - Moving Data Around (16-07).srt

19.0 KB

12 - 3 - Dual Decomposition - Algorithm (16-16).srt

19.0 KB

13 - 3 - Using a Markov Chain (15-27).srt

18.3 KB

18 - 3 - Bayesian Estimation (15-27).srt

18.2 KB

10 - 5 - Clique Trees and VE (16-17).srt

18.1 KB

8 - 3 - Variable Elimination Algorithm (16-17).srt

17.9 KB

8 - 1 - Overview- Conditional Probability Queries (15-22).srt

17.9 KB

10 - 6 - BP In Practice (15-38).srt

17.7 KB

13 - 2 - Markov Chain Monte Carlo (14-18).srt

17.4 KB

10 - 4 - Clique Trees and Independence (15-21).srt

17.3 KB

5 - 2 - Tree-Structured CPDs (14-37).srt

17.2 KB

18 - 2 - Maximum Likelihood Estimation for Bayesian Networks (15-49).srt

17.1 KB

4 - 6 - Vectorization (13-48).srt

17.1 KB

9 - 2 - Properties of Cluster Graphs (15-00).srt

16.9 KB

4 - 1 - Basic Operations (13-59).srt

16.8 KB

14 - 2 - Inference- Summary (12-45).srt

16.7 KB

6 - 2 - General Gibbs Distribution (15-52).srt

16.7 KB

10 - 3 - Clique Tree Algorithm - Computation (16-18).srt

16.5 KB

16 - 4 - Model Selection and Train Validation Test Sets (12-03).srt

16.4 KB

4 - 3 - Computing On Data (13-15).srt

16.3 KB

19 - 2 - Maximum Likelihood for Conditional Random Fields (13-24).srt

16.1 KB

2 - 3 - Flow of Probabilistic Influence (14-36).srt

15.8 KB

18 - 1 - Maximum Likelihood Estimation (14-59).srt

15.8 KB

21 - 4 - EM in Practice (11-17).srt

15.5 KB

3 - 3 - Temporal Models - HMMs (12-01).srt

15.5 KB

4 - 5 - Control Statements- for, while, if statements (12-55).srt

15.5 KB

18 - 4 - Bayesian Prediction (13-40).srt

15.4 KB

2 - 4 - Conditional Independence (12-38).srt

15.3 KB

16 - 6 - Regularization and Bias Variance (11-20).srt

15.2 KB

8 - 5 - Graph-Based Perspective on Variable Elimination (15-25).srt

15.2 KB

5 - 4 - Continuous Variables (13-25).srt

14.9 KB

8 - 6 - Finding Elimination Orderings (11-58).srt

14.4 KB

20 - 5 - Learning Tree Structured Networks (12-05).srt

14.3 KB

5 - 3 - Independence of Causal Influence (13-08).srt

14.2 KB

20 - 3 - BIC and Asymptotic Consistency (11-26).srt

13.9 KB

6 - 1 - Pairwise Markov Networks (10-59).srt

13.8 KB

16 - 2 - Regularization- Cost Function (10-10).srt

13.6 KB

16 - 1 - Regularization- The Problem of Overfitting (09-42).srt

13.5 KB

21 - 3 - Analysis of EM Algorithm (11-32).srt

13.4 KB

8 - 4 - Complexity of Variable Elimination (12-48).srt

13.2 KB

3 - 1 - Overview of Template Models (10-55).srt

13.0 KB

19 - 3 - MAP Estimation for MRFs and CRFs (9-59).srt

12.7 KB

2 - 7 - Application - Medical Diagnosis (09-19).srt

12.4 KB

2 - 2 - Reasoning Patterns (09-59).srt

12.2 KB

4 - 4 - Plotting Data (09-38).srt

11.5 KB

8 - 2 - Overview- MAP Inference (09-42).srt

11.4 KB

2 - 6 - Naive Bayes (09-52).srt

11.4 KB

10 - 1 - Properties of Belief Propagation (9-31).srt

10.7 KB

16 - 5 - Diagnosing Bias vs Variance (07-42).srt

10.7 KB

1 - 1 - Welcome! (05-35).srt

10.3 KB

5 - 1 - Overview- Structured CPDs (08-00).srt

10.2 KB

16 - 3 - Evaluating a Hypothesis (07-35).srt

9.3 KB

6 - 7 - Shared Features in Log-Linear Models (08-28).srt

9.2 KB

1 - 4 - Factors (06-40).srt

8.7 KB

20 - 1 - Structure Learning Overview (5-49).srt

8.0 KB

1 - 3 - Distributions (04-56).srt

7.1 KB

6 - 4 - Independencies in Markov Networks (04-48).srt

5.5 KB

11 - 2 - Finding a MAP Assignment (3-57).srt

5.2 KB

4 - 7 - Working on and Submitting Programming Exercises (03-33).srt

4.6 KB

 

Total files 186


Copyright © 2025 FileMood.com