Pluralsight Path Building Statistical and Mathematical Models with 2020 |
||
Name |
Pluralsight Path. Building Statistical and Mathematical Models with R (2020) |
DOWNLOAD Copy Link |
Total Size |
2.6 GB |
|
Total Files |
591 |
|
Last Seen |
2025-02-20 00:01 |
|
Hash |
25BB3D8A394EC05B76C7157E5620547110BE23E9 |
/ |
|
A3. Binomial Coefficient Analysis with R (Deepika Singh, 2019).html |
19.9 KB |
A3. Binomial Coefficient Analysis with R (Deepika Singh, 2019).png |
113.3 KB |
A4. Beta and Gamma Function Implementation in R (Deepika Singh, 2020).html |
53.5 KB |
A4. Beta and Gamma Function Implementation in R (Deepika Singh, 2020).png |
321.7 KB |
|
194.5 KB |
|
1.6 KB |
/A1. Understanding Statistical Models and Mathematical Models (Janani Ravi, 2019)/ |
|
|
2.6 MB |
|
2.9 KB |
|
2.1 KB |
/1. Course Overview/ |
|
|
3.9 MB |
|
3.4 KB |
/.../2. Understanding Statistical and Mathematical Models/ |
|
|
525.5 KB |
|
0.0 KB |
|
2.0 MB |
|
2.1 KB |
3. Understanding Mathematical Models and Statistical Models.mp4 |
12.8 MB |
3. Understanding Mathematical Models and Statistical Models.vtt |
11.8 KB |
4. Mathematical Models and Statistical Models - Differences and Applicati.mp4 |
9.8 MB |
4. Mathematical Models and Statistical Models - Differences and Applicati.vtt |
9.1 KB |
|
9.5 MB |
|
9.7 KB |
6. Demo - Creating an Environment to Run the R Kernel on Jupyter Notebook.mp4 |
7.1 MB |
6. Demo - Creating an Environment to Run the R Kernel on Jupyter Notebook.vtt |
3.8 KB |
7. Demo - Associating Metadata Using the Comment Function.mp4 |
4.0 MB |
7. Demo - Associating Metadata Using the Comment Function.vtt |
3.8 KB |
8. Demo - Querying and Setting Metadata Using the Meta Function.mp4 |
14.6 MB |
8. Demo - Querying and Setting Metadata Using the Meta Function.vtt |
9.9 KB |
/.../3. Case Studies on Statistical and Mathematical Models/ |
|
|
5.8 MB |
|
5.2 KB |
|
7.9 MB |
|
7.4 KB |
|
6.9 MB |
|
5.7 KB |
|
8.9 MB |
|
7.9 KB |
|
6.6 MB |
|
6.2 KB |
|
8.2 MB |
|
7.8 KB |
/.../4. Applying Mathematical Models in R/ |
|
|
3.4 MB |
|
3.2 KB |
|
9.8 MB |
|
7.8 KB |
|
11.7 MB |
|
9.0 KB |
4. Demo - Solving Verhulsts Equation for Population Growth.mp4 |
10.7 MB |
4. Demo - Solving Verhulsts Equation for Population Growth.vtt |
8.2 KB |
|
12.5 MB |
|
11.9 KB |
|
9.8 MB |
|
9.4 KB |
7. Demo - Setting up Helper Functions to Solve the 8 Queens Optimization Prob.mp4 |
17.0 MB |
7. Demo - Setting up Helper Functions to Solve the 8 Queens Optimization Prob.vtt |
13.6 KB |
8. Demo - Applying Local Search Optimization to Solve the Eight Queens Proble.mp4 |
12.1 MB |
8. Demo - Applying Local Search Optimization to Solve the Eight Queens Proble.vtt |
9.5 KB |
/.../5. Applying Statistical Models in R/ |
|
|
7.0 MB |
|
7.1 KB |
|
9.4 MB |
|
8.3 KB |
|
9.2 MB |
|
8.1 KB |
|
12.0 MB |
|
7.8 KB |
|
11.6 MB |
|
8.6 KB |
|
7.5 MB |
|
5.7 KB |
|
12.6 MB |
|
7.8 KB |
|
10.0 MB |
|
7.0 KB |
|
2.2 MB |
|
2.2 KB |
/A2. Solving Problems with Numerical Methods (Janani Ravi, 2020)/ |
|
|
5.4 MB |
|
4.8 KB |
|
2.8 KB |
/1. Course Overview/ |
|
|
3.7 MB |
|
3.0 KB |
/.../2. Understanding Numerical Methods/ |
|
|
502.5 KB |
|
0.0 KB |
|
4.7 MB |
|
3.9 KB |
|
6.4 MB |
|
6.1 KB |
|
8.6 MB |
|
7.2 KB |
|
7.3 MB |
|
5.7 KB |
|
4.0 MB |
|
3.9 KB |
7. Constant, Linear, Polynomial, and Spline Interpolation.mp4 |
8.7 MB |
7. Constant, Linear, Polynomial, and Spline Interpolation.vtt |
7.0 KB |
|
5.6 MB |
|
4.6 KB |
|
11.2 MB |
|
9.5 KB |
/.../3. Applying Numerical Methods to Solve Problems/ |
|
|
15.5 MB |
|
11.1 KB |
|
12.4 MB |
|
8.5 KB |
3. Demo - Interpolation Using Spline and Smoothing Techniques.mp4 |
5.0 MB |
3. Demo - Interpolation Using Spline and Smoothing Techniques.vtt |
2.7 KB |
4. Demo - Iterative Techniques - Jacobi Method to Solve Linear Equations.mp4 |
11.3 MB |
4. Demo - Iterative Techniques - Jacobi Method to Solve Linear Equations.vtt |
7.4 KB |
5. Demo - Direct Techniques - Gaussian Elimination to Solve Linear Equations.mp4 |
6.1 MB |
5. Demo - Direct Techniques - Gaussian Elimination to Solve Linear Equations.vtt |
4.0 KB |
|
10.7 MB |
|
6.8 KB |
|
9.4 MB |
|
5.8 KB |
|
10.4 MB |
|
6.8 KB |
|
19.5 MB |
|
12.9 KB |
/.../4. Working with Graphs Using Numerical Techniques/ |
|
|
8.2 MB |
|
7.3 KB |
|
6.3 MB |
|
5.8 KB |
|
3.7 MB |
|
2.8 KB |
|
10.4 MB |
|
7.2 KB |
|
9.8 MB |
|
7.7 KB |
|
11.7 MB |
|
7.7 KB |
|
7.9 MB |
|
4.5 KB |
|
9.0 MB |
|
5.9 KB |
|
14.4 MB |
|
9.2 KB |
|
6.2 MB |
|
3.8 KB |
/.../5. Implementing Local Search and Optimizations/ |
|
|
13.0 MB |
|
10.9 KB |
|
8.6 MB |
|
7.4 KB |
|
6.1 MB |
|
4.4 KB |
|
20.0 MB |
|
13.2 KB |
|
4.0 MB |
|
2.6 KB |
06. Demo - 8 Queens - Solution Using Local Search Techniques.mp4 |
10.7 MB |
06. Demo - 8 Queens - Solution Using Local Search Techniques.vtt |
6.5 KB |
|
12.0 MB |
|
8.5 KB |
|
7.7 MB |
|
5.6 KB |
09. Setting up the Optimization as a Linear Programming Problem.mp4 |
4.3 MB |
09. Setting up the Optimization as a Linear Programming Problem.vtt |
3.4 KB |
|
4.7 MB |
|
4.2 KB |
11. Demo - Solving Optimization Problems Using Linear Programming.mp4 |
8.6 MB |
11. Demo - Solving Optimization Problems Using Linear Programming.vtt |
5.9 KB |
12. Demo - Linear Programming to Solve the Wyndor Glass Problem.mp4 |
5.9 MB |
12. Demo - Linear Programming to Solve the Wyndor Glass Problem.vtt |
4.4 KB |
/.../6. Implementing Integration and Differentiation/ |
|
|
6.5 MB |
|
4.9 KB |
|
9.7 MB |
|
7.6 KB |
|
11.5 MB |
|
7.3 KB |
|
6.0 MB |
|
5.2 KB |
|
9.8 MB |
|
5.8 KB |
06. Demo - Calculating Velocity and Acceleration Using Derivatives.mp4 |
5.3 MB |
06. Demo - Calculating Velocity and Acceleration Using Derivatives.vtt |
3.5 KB |
|
10.8 MB |
|
6.4 KB |
08. Demo - Using the ODE Solver to Solve Differential Equations.mp4 |
12.2 MB |
08. Demo - Using the ODE Solver to Solve Differential Equations.vtt |
8.0 KB |
|
11.9 MB |
|
7.1 KB |
|
2.1 MB |
|
2.1 KB |
/B1. Applying the Mathematical MASS Model with R (Janani Ravi, 2020)/ |
|
|
4.2 MB |
|
3.4 KB |
|
3.4 KB |
/1. Course Overview/ |
|
|
3.9 MB |
|
3.1 KB |
/.../2. Performing Qualitative and Quantitative Analysis Using MASS Datasets/ |
|
|
514.6 KB |
|
0.0 KB |
|
4.0 MB |
|
3.5 KB |
|
2.6 MB |
|
2.4 KB |
|
4.8 MB |
|
3.7 KB |
|
10.5 MB |
|
9.0 KB |
|
4.6 MB |
|
3.9 KB |
|
7.8 MB |
|
5.7 KB |
|
17.3 MB |
|
11.9 KB |
|
8.3 MB |
|
5.7 KB |
|
8.0 MB |
|
5.0 KB |
|
8.6 MB |
|
5.5 KB |
|
6.7 MB |
|
5.4 KB |
/.../3. Performing Predictive Analytics Using MASS Models/ |
|
|
8.6 MB |
|
7.0 KB |
2. Linear Discriminant Analysis and Quadratic Discriminant Analysis.mp4 |
6.2 MB |
2. Linear Discriminant Analysis and Quadratic Discriminant Analysis.vtt |
4.6 KB |
|
6.9 MB |
|
5.8 KB |
4. Demo - Linear Discriminant Analysis (LDA) and Visualization.mp4 |
20.4 MB |
4. Demo - Linear Discriminant Analysis (LDA) and Visualization.vtt |
11.6 KB |
|
7.0 MB |
|
4.0 KB |
|
5.2 MB |
|
3.1 KB |
|
15.9 MB |
|
10.7 KB |
8. Demo - Robust Regression Using the Boston Housing Dataset.mp4 |
20.4 MB |
8. Demo - Robust Regression Using the Boston Housing Dataset.vtt |
11.8 KB |
/.../4. Implementing Multi-state Models in R/ |
|
|
15.0 MB |
|
12.5 KB |
|
9.6 MB |
|
8.1 KB |
|
5.9 MB |
|
5.0 KB |
04. Understanding Weibull Distributions to Model State Transitions.mp4 |
4.1 MB |
04. Understanding Weibull Distributions to Model State Transitions.vtt |
3.5 KB |
|
4.4 MB |
|
3.5 KB |
|
3.7 MB |
|
3.2 KB |
|
15.9 MB |
|
9.8 KB |
08. Demo - Modeling Transition Probabilities and Simulating Outcomes.mp4 |
15.9 MB |
08. Demo - Modeling Transition Probabilities and Simulating Outcomes.vtt |
9.7 KB |
09. Demo - Visualizing and Interpreting State Occupancy Probabilities.mp4 |
17.3 MB |
09. Demo - Visualizing and Interpreting State Occupancy Probabilities.vtt |
8.8 KB |
|
11.9 MB |
|
7.2 KB |
11. Demo - Log Rank Tests and the Proportional Hazards Model.mp4 |
8.0 MB |
11. Demo - Log Rank Tests and the Proportional Hazards Model.vtt |
4.5 KB |
|
2.2 MB |
|
2.1 KB |
/B2. Applying Differential Equations and Inverse Models with R (Janani Ravi, 2020)/ |
|
|
4.4 MB |
|
3.2 KB |
|
3.1 KB |
/1. Course Overview/ |
|
|
3.6 MB |
|
3.1 KB |
/.../2. Getting Started with Differential Equations/ |
|
|
520.1 KB |
|
0.0 KB |
|
4.1 MB |
|
3.7 KB |
|
6.1 MB |
|
4.1 KB |
|
8.1 MB |
|
6.2 KB |
|
11.2 MB |
|
7.1 KB |
06. Introducing Integration to Solve Differential Equations.mp4 |
5.3 MB |
06. Introducing Integration to Solve Differential Equations.vtt |
4.7 KB |
|
4.6 MB |
|
3.7 KB |
|
5.0 MB |
|
4.2 KB |
|
7.6 MB |
|
6.1 KB |
|
7.4 MB |
|
7.1 KB |
|
12.6 MB |
|
9.4 KB |
/.../3. Understanding Types of Differential Equations/ |
|
|
9.8 MB |
|
8.0 KB |
|
8.9 MB |
|
6.7 KB |
|
10.6 MB |
|
7.9 KB |
|
4.0 MB |
|
3.3 KB |
|
7.1 MB |
|
5.5 KB |
|
6.3 MB |
|
5.0 KB |
|
9.8 MB |
|
7.3 KB |
/.../4. Solving Differential Equations/ |
|
|
12.2 MB |
|
8.7 KB |
|
10.9 MB |
|
5.5 KB |
3. Demo - Solving ODEs - Chaotic Solutions to Lorenzs Equation.mp4 |
8.2 MB |
3. Demo - Solving ODEs - Chaotic Solutions to Lorenzs Equation.vtt |
3.8 KB |
4. Demo - Solving DAEs - An Auto-catalytic Chemical Reaction.mp4 |
14.7 MB |
4. Demo - Solving DAEs - An Auto-catalytic Chemical Reaction.vtt |
8.5 KB |
|
4.7 MB |
|
2.7 KB |
6. Demo - Solving PDEs - The Diffusion Equation for Heat Transfer.mp4 |
13.5 MB |
6. Demo - Solving PDEs - The Diffusion Equation for Heat Transfer.vtt |
7.3 KB |
|
12.8 MB |
|
8.0 KB |
/.../5. Understanding and Applying Linear Inverse Models/ |
|
|
6.9 MB |
|
4.8 KB |
|
4.7 MB |
|
3.7 KB |
|
7.7 MB |
|
5.4 KB |
|
7.3 MB |
|
5.4 KB |
|
9.1 MB |
|
7.1 KB |
|
6.3 MB |
|
4.1 KB |
|
6.8 MB |
|
4.5 KB |
|
7.1 MB |
|
4.6 KB |
|
8.3 MB |
|
5.7 KB |
|
2.2 MB |
|
2.0 KB |
/B3. Performing Dimension Analysis with R (Janani Ravi, 2020)/ |
|
|
10.4 MB |
|
2.7 KB |
|
2.8 KB |
/1. Course Overview/ |
|
|
3.8 MB |
|
3.1 KB |
/.../2. Understanding the Importance of Reducing Complexity in Data/ |
|
|
499.0 KB |
|
0.0 KB |
|
4.2 MB |
|
3.9 KB |
|
12.4 MB |
|
11.4 KB |
|
3.2 MB |
|
3.4 KB |
|
12.4 MB |
|
11.0 KB |
|
7.6 MB |
|
6.5 KB |
|
8.0 MB |
|
6.4 KB |
|
16.3 MB |
|
8.9 KB |
09. Demo - Selecting Predictors to Build Regression Models.mp4 |
9.0 MB |
09. Demo - Selecting Predictors to Build Regression Models.vtt |
5.0 KB |
10. Demo - Performing Stepwise and Kitchen Sink Regression.mp4 |
15.0 MB |
10. Demo - Performing Stepwise and Kitchen Sink Regression.vtt |
9.5 KB |
/.../3. Performing Dimensional Analysis for Continuous Data/ |
|
|
12.6 MB |
|
10.4 KB |
|
8.6 MB |
|
6.7 KB |
|
15.8 MB |
|
9.2 KB |
|
11.9 MB |
|
6.7 KB |
|
11.6 MB |
|
7.5 KB |
|
8.3 MB |
|
6.5 KB |
/.../4. Performing Dimensional Analysis for Categorical Data/ |
|
1. Linear Discriminant Analysis and Quadratic Discriminant Analysis.mp4 |
12.8 MB |
1. Linear Discriminant Analysis and Quadratic Discriminant Analysis.vtt |
9.7 KB |
2. Demo - Exploring and Preparing Data for Linear Discriminant Analysis.mp4 |
14.5 MB |
2. Demo - Exploring and Preparing Data for Linear Discriminant Analysis.vtt |
9.7 KB |
3. Demo - Performing Linear Discriminant Analysis on Glass Data.mp4 |
17.4 MB |
3. Demo - Performing Linear Discriminant Analysis on Glass Data.vtt |
11.5 KB |
4. Demo - Performing Quadratic Discriminant Analysis on Glass Data.mp4 |
6.7 MB |
4. Demo - Performing Quadratic Discriminant Analysis on Glass Data.vtt |
5.0 KB |
/.../5. Performing Dimensional Analysis for Non-linear Data/ |
|
|
15.4 MB |
|
12.2 KB |
2. Demo - Manifold Learning Using Metric and Non-metric MDS.mp4 |
21.0 MB |
2. Demo - Manifold Learning Using Metric and Non-metric MDS.vtt |
11.3 KB |
3. Demo - Manifold Learning Using t-SNE, Isomap, and LLE.mp4 |
17.5 MB |
3. Demo - Manifold Learning Using t-SNE, Isomap, and LLE.vtt |
8.5 KB |
|
10.4 MB |
|
6.7 KB |
|
3.0 MB |
|
3.1 KB |
/B4. Applying Linear Algebra with R (Brandon Strain, 2020)/ |
|
|
9.4 MB |
|
1.1 KB |
|
1.6 KB |
/1. Course Overview/ |
|
|
4.6 MB |
|
3.0 KB |
/.../2. Working with Vectors and Matrices in R/ |
|
|
20.3 MB |
|
10.5 KB |
/.../3. Understanding Operations on Matrices/ |
|
|
11.4 MB |
|
7.5 KB |
/.../4. Getting Weird - Inverting, Transposing, and Row Equivalence/ |
|
|
24.5 MB |
|
15.8 KB |
/.../5. Solving Linear Equations/ |
|
|
17.2 MB |
|
13.0 KB |
/.../6. Understanding and Calculating Eigenvalues and Eigenvectors/ |
|
1. Understanding and Calculating Eigenvalues and Eigenvectors.mp4 |
15.7 MB |
1. Understanding and Calculating Eigenvalues and Eigenvectors.vtt |
13.4 KB |
/.../7. Calculating the kth Item in a Series/ |
|
|
803.7 KB |
|
0.9 KB |
|
10.3 MB |
|
8.8 KB |
|
21.0 MB |
|
9.2 KB |
/.../8. Implementing Matrix Decomposition/ |
|
|
10.9 MB |
|
11.9 KB |
|
32.3 MB |
|
10.4 KB |
/.../9. Using Least Squares Calculations/ |
|
|
7.8 MB |
|
8.4 KB |
|
16.9 MB |
|
8.4 KB |
/C1. Building Statistical Summaries with R (Janani Ravi, 2019)/ |
|
|
5.3 MB |
|
3.2 KB |
|
2.5 KB |
/1. Course Overview/ |
|
|
3.8 MB |
|
3.1 KB |
/.../2. Understanding Statistical Summaries/ |
|
|
499.6 KB |
|
0.0 KB |
|
2.8 MB |
|
2.8 KB |
|
5.2 MB |
|
5.2 KB |
|
12.5 MB |
|
11.2 KB |
|
3.9 MB |
|
3.6 KB |
|
5.5 MB |
|
4.9 KB |
|
8.0 MB |
|
7.6 KB |
|
4.2 MB |
|
3.9 KB |
|
9.8 MB |
|
8.8 KB |
|
3.5 MB |
|
3.1 KB |
|
6.2 MB |
|
5.6 KB |
/.../3. Solving Problems Using Statistical Inference/ |
|
|
10.2 MB |
|
7.7 KB |
|
12.0 MB |
|
9.0 KB |
|
15.1 MB |
|
10.6 KB |
|
13.2 MB |
|
9.3 KB |
|
11.4 MB |
|
8.7 KB |
|
11.8 MB |
|
8.6 KB |
|
13.6 MB |
|
9.9 KB |
|
6.7 MB |
|
4.5 KB |
|
15.7 MB |
|
12.2 KB |
/.../4. Implementing Statistical Models/ |
|
|
4.2 MB |
|
3.5 KB |
|
8.3 MB |
|
8.0 KB |
|
9.5 MB |
|
6.5 KB |
4. Demo - Performing Linear Regression and Interpretings Results.mp4 |
15.6 MB |
4. Demo - Performing Linear Regression and Interpretings Results.vtt |
10.3 KB |
|
8.5 MB |
|
7.8 KB |
|
3.2 MB |
|
3.0 KB |
|
10.0 MB |
|
7.1 KB |
8. Demo - Accuracy, Sensitivity, and Specificity of the Logistic Regression Model.mp4 |
15.9 MB |
8. Demo - Accuracy, Sensitivity, and Specificity of the Logistic Regression Model.vtt |
11.7 KB |
/.../5. Implementing Bayesian AB Testing/ |
|
|
8.7 MB |
|
7.7 KB |
|
12.7 MB |
|
12.1 KB |
|
5.5 MB |
|
5.7 KB |
|
7.2 MB |
|
6.8 KB |
|
8.8 MB |
|
7.8 KB |
|
8.7 MB |
|
7.8 KB |
07. Demo - Modelling Outcomes and Priors for the Bayes AB Test.mp4 |
15.8 MB |
07. Demo - Modelling Outcomes and Priors for the Bayes AB Test.vtt |
11.0 KB |
08. Demo - Performing and Interpreting the Bayesian AB Test for Click-through Rates.mp4 |
8.5 MB |
08. Demo - Performing and Interpreting the Bayesian AB Test for Click-through Rates.vtt |
5.7 KB |
09. Demo - Performing and Interpreting the Bayesian AB Test for Page Interactions.mp4 |
5.7 MB |
09. Demo - Performing and Interpreting the Bayesian AB Test for Page Interactions.vtt |
3.8 KB |
|
2.4 MB |
|
2.6 KB |
/C2. Implementing Bootstrap Methods in R (Janani Ravi, 2020)/ |
|
|
3.8 MB |
|
2.9 KB |
|
3.4 KB |
/1. Course Overview/ |
|
|
3.8 MB |
|
3.0 KB |
/.../2. Getting Started with Bootstrapping in R/ |
|
|
498.6 KB |
|
0.0 KB |
|
4.2 MB |
|
3.9 KB |
|
9.3 MB |
|
7.6 KB |
|
13.7 MB |
|
8.1 KB |
05. Normally Distributed Data - Calculating Confidence Intervals.mp4 |
6.1 MB |
05. Normally Distributed Data - Calculating Confidence Intervals.vtt |
4.5 KB |
06. Data with Any Distribution - Estimating Mean and Confidence Intervals.mp4 |
11.7 MB |
06. Data with Any Distribution - Estimating Mean and Confidence Intervals.vtt |
7.6 KB |
|
5.0 MB |
|
3.6 KB |
08. Demo - The Central Limit Theorem with Different Distributions.mp4 |
14.6 MB |
08. Demo - The Central Limit Theorem with Different Distributions.vtt |
10.6 KB |
|
10.5 MB |
|
6.2 KB |
|
5.7 MB |
|
4.2 KB |
|
12.9 MB |
|
8.7 KB |
|
14.2 MB |
|
11.6 KB |
/.../3. Implementing Bootstrap Methods for Summary Statistics/ |
|
|
19.8 MB |
|
13.3 KB |
|
20.1 MB |
|
11.7 KB |
3. Demo - Performing Bootstrapping Using the Boot Method.mp4 |
9.1 MB |
3. Demo - Performing Bootstrapping Using the Boot Method.vtt |
6.0 KB |
|
14.6 MB |
|
10.0 KB |
|
9.4 MB |
|
6.6 KB |
|
5.4 MB |
|
3.6 KB |
|
13.5 MB |
|
9.0 KB |
|
4.7 MB |
|
3.7 KB |
|
7.9 MB |
|
5.9 KB |
/.../4. Implementing Bootstrap Methods for Regression Models/ |
|
|
2.9 MB |
|
2.6 KB |
|
8.6 MB |
|
6.4 KB |
|
6.9 MB |
|
4.8 KB |
4. Demo - Estimating R2 of Regression Models Using Bootstrapping.mp4 |
12.5 MB |
4. Demo - Estimating R2 of Regression Models Using Bootstrapping.vtt |
8.4 KB |
|
13.1 MB |
|
8.4 KB |
6. Demo - Case Resampling and Residual Resampling Using the Boot() Method.mp4 |
11.2 MB |
6. Demo - Case Resampling and Residual Resampling Using the Boot() Method.vtt |
5.8 KB |
|
2.7 MB |
|
2.8 KB |
/C3. Implementing Monte Carlo Method in R (Chase DeHan, 2020)/ |
|
|
2.3 MB |
|
1.3 KB |
|
1.5 KB |
/1. Course Overview/ |
|
|
3.4 MB |
|
2.1 KB |
/.../2. Understanding Monte Carlo Basics/ |
|
|
6.0 MB |
|
6.9 KB |
|
13.5 MB |
|
13.9 KB |
|
12.2 MB |
|
9.8 KB |
|
9.3 MB |
|
5.9 KB |
/.../3. Making Predictions with Monte Carlo/ |
|
|
2.1 MB |
|
2.5 KB |
|
10.8 MB |
|
8.4 KB |
|
19.6 MB |
|
11.3 KB |
|
22.1 MB |
|
13.1 KB |
|
24.0 MB |
|
15.6 KB |
|
1.3 MB |
|
1.3 KB |
/.../4. Using Monte Carlo for Value at Risk/ |
|
|
5.5 MB |
|
4.5 KB |
|
11.8 MB |
|
7.8 KB |
|
14.9 MB |
|
9.0 KB |
|
14.8 MB |
|
8.8 KB |
/.../5. Utilizing MC for AB Testing/ |
|
|
3.6 MB |
|
3.7 KB |
|
9.8 MB |
|
6.4 KB |
|
8.5 MB |
|
7.0 KB |
|
13.8 MB |
|
11.2 KB |
|
7.7 MB |
|
7.7 KB |
Total files 591 |
Copyright © 2025 FileMood.com