FileMood

Download Tensorflow 2.0 Deep Learning and Artificial Intelligence

Tensorflow Deep Learning and Artificial Intelligence

Name

Tensorflow 2.0 Deep Learning and Artificial Intelligence

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

7.4 GB

Total Files

403

Last Seen

2025-05-21 23:41

Hash

FE075B3B187DC4DBB4D8409428F3D03E7F970BC6

/.../18. Setting up your Environment (FAQ by Student Request)/

2. Anaconda Environment Setup.mp4

189.7 MB

3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.srt

32.8 KB

3. Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.mp4

175.4 MB

2. Anaconda Environment Setup.srt

20.4 KB

1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt

15.0 KB

1. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4

157.9 MB

/

TutsNode.com.txt

0.1 KB

[TGx]Downloaded from torrentgalaxy.to .txt

0.6 KB

/.../20. Effective Learning Strategies for Machine Learning (FAQ by Student Request)/

2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt

32.4 KB

4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt

23.6 KB

3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt

16.5 KB

1. How to Succeed in this Course (Long Version).srt

15.0 KB

4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4

113.4 MB

2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4

110.7 MB

3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4

83.6 MB

1. How to Succeed in this Course (Long Version).mp4

36.9 MB

/.../5. Convolutional Neural Networks/

5. CNN Architecture.srt

28.6 KB

4. Convolution on Color Images.srt

21.0 KB

1. What is Convolution (part 1).srt

20.6 KB

6. CNN Code Preparation.srt

20.1 KB

11. Improving CIFAR-10 Results.srt

13.5 KB

9. Data Augmentation.srt

11.5 KB

3. What is Convolution (part 3).srt

8.2 KB

7. CNN for Fashion MNIST.srt

8.2 KB

2. What is Convolution (part 2).srt

7.4 KB

10. Batch Normalization.srt

6.7 KB

8. CNN for CIFAR-10.srt

5.5 KB

5. CNN Architecture.mp4

84.5 MB

1. What is Convolution (part 1).mp4

83.6 MB

6. CNN Code Preparation.mp4

80.6 MB

11. Improving CIFAR-10 Results.mp4

76.5 MB

4. Convolution on Color Images.mp4

72.8 MB

7. CNN for Fashion MNIST.mp4

44.9 MB

9. Data Augmentation.mp4

36.6 MB

8. CNN for CIFAR-10.mp4

31.1 MB

3. What is Convolution (part 3).mp4

29.0 MB

2. What is Convolution (part 2).mp4

23.3 MB

10. Batch Normalization.mp4

22.1 MB

/.../3. Machine Learning and Neurons/

10. Why Keras.srt

5.9 KB

2. Code Preparation (Classification Theory).srt

20.7 KB

1. What is Machine Learning.srt

18.9 KB

7. How does a model learn.srt

14.3 KB

6. The Neuron.srt

12.8 KB

5. Regression Notebook.srt

12.4 KB

9. Saving and Loading a Model.srt

5.0 KB

3. Classification Notebook.srt

9.6 KB

4. Code Preparation (Regression Theory).srt

9.3 KB

8. Making Predictions.srt

8.2 KB

11. Suggestion Box.srt

4.9 KB

1. What is Machine Learning.mp4

68.7 MB

2. Code Preparation (Classification Theory).mp4

62.7 MB

5. Regression Notebook.mp4

60.3 MB

3. Classification Notebook.mp4

57.2 MB

7. How does a model learn.mp4

50.3 MB

6. The Neuron.mp4

44.6 MB

8. Making Predictions.mp4

35.5 MB

9. Saving and Loading a Model.mp4

31.2 MB

4. Code Preparation (Regression Theory).mp4

28.6 MB

11. Suggestion Box.mp4

28.4 MB

10. Why Keras.mp4

27.8 MB

/.pad/

0

0.1 KB

1

0.3 KB

2

0.2 KB

3

558.5 KB

4

872.9 KB

5

413.7 KB

6

8.7 KB

7

426.8 KB

8

895.0 KB

9

878.8 KB

10

1.0 MB

11

440.5 KB

12

486.2 KB

13

148.3 KB

14

242.3 KB

15

305.2 KB

16

738.3 KB

17

126.5 KB

18

309.2 KB

19

975.5 KB

20

343.3 KB

21

430.9 KB

22

94.2 KB

23

158.3 KB

24

317.3 KB

25

567.9 KB

26

581.4 KB

27

591.9 KB

28

760.8 KB

29

361.5 KB

30

504.0 KB

31

3.3 KB

32

689.6 KB

33

930.8 KB

34

500.7 KB

35

525.0 KB

36

371.1 KB

37

98.0 KB

38

176.2 KB

39

213.3 KB

40

202.2 KB

41

476.2 KB

42

560.3 KB

43

1.0 MB

44

596.8 KB

45

763.7 KB

46

1.0 MB

47

916.8 KB

48

927.8 KB

49

484.0 KB

50

169.1 KB

51

94.8 KB

52

246.9 KB

53

461.3 KB

54

510.1 KB

55

547.7 KB

56

998.9 KB

57

28.9 KB

58

84.6 KB

59

337.9 KB

60

675.6 KB

61

417.4 KB

62

682.1 KB

63

898.3 KB

64

50.0 KB

65

299.2 KB

66

258.0 KB

67

317.9 KB

68

992.1 KB

69

800.0 KB

70

76.6 KB

71

259.9 KB

72

462.5 KB

73

480.4 KB

74

704.8 KB

75

219.4 KB

76

268.4 KB

77

429.5 KB

78

453.3 KB

79

565.6 KB

80

647.6 KB

81

253.4 KB

82

362.8 KB

83

627.9 KB

84

737.6 KB

85

936.2 KB

86

394.4 KB

87

474.0 KB

88

74.7 KB

89

330.4 KB

90

992.9 KB

91

80.8 KB

92

217.8 KB

93

311.3 KB

94

457.2 KB

95

820.3 KB

96

51.3 KB

97

84.4 KB

98

157.2 KB

99

196.7 KB

100

782.1 KB

101

122.2 KB

102

237.1 KB

103

27.4 KB

104

299.9 KB

105

312.5 KB

106

449.4 KB

107

190.6 KB

108

286.9 KB

109

320.2 KB

110

922.8 KB

111

247.5 KB

112

700.1 KB

113

235.5 KB

114

382.0 KB

115

747.8 KB

116

921.2 KB

117

509.6 KB

118

1.0 MB

119

19.5 KB

120

24.4 KB

121

1.0 MB

122

332.9 KB

123

732.0 KB

124

33.7 KB

125

768.9 KB

126

908.6 KB

127

935.3 KB

128

443.9 KB

129

601.3 KB

130

427.0 KB

131

654.5 KB

/1. Welcome/

3.1 Colab Notebooks.html

0.2 KB

3.2 Github Link.html

0.1 KB

2. Outline.srt

17.5 KB

3. Where to get the code.srt

15.7 KB

1. Introduction.srt

5.8 KB

2. Outline.mp4

77.3 MB

3. Where to get the code.mp4

66.0 MB

1. Introduction.mp4

36.5 MB

/.../11. Deep Reinforcement Learning (Theory)/

2. Elements of a Reinforcement Learning Problem.srt

26.8 KB

11. Q-Learning.srt

18.3 KB

12. Deep Q-Learning DQN (pt 1).srt

16.8 KB

9. Solving the Bellman Equation with Reinforcement Learning (pt 2).srt

15.2 KB

13. Deep Q-Learning DQN (pt 2).srt

13.5 KB

4. Markov Decision Processes (MDPs).srt

13.0 KB

6. Value Functions and the Bellman Equation.srt

12.8 KB

8. Solving the Bellman Equation with Reinforcement Learning (pt 1).srt

12.7 KB

3. States, Actions, Rewards, Policies.srt

11.6 KB

7. What does it mean to “learn”.srt

9.1 KB

1. Deep Reinforcement Learning Section Introduction.srt

8.8 KB

14. How to Learn Reinforcement Learning.srt

7.8 KB

10. Epsilon-Greedy.srt

7.7 KB

5. The Return.srt

6.4 KB

2. Elements of a Reinforcement Learning Problem.mp4

103.4 MB

11. Q-Learning.mp4

64.8 MB

12. Deep Q-Learning DQN (pt 1).mp4

59.0 MB

9. Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4

55.5 MB

13. Deep Q-Learning DQN (pt 2).mp4

52.0 MB

4. Markov Decision Processes (MDPs).mp4

51.7 MB

6. Value Functions and the Bellman Equation.mp4

45.7 MB

3. States, Actions, Rewards, Policies.mp4

45.4 MB

8. Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4

44.8 MB

10. Epsilon-Greedy.mp4

42.1 MB

1. Deep Reinforcement Learning Section Introduction.mp4

39.9 MB

14. How to Learn Reinforcement Learning.mp4

39.5 MB

7. What does it mean to “learn”.mp4

33.3 MB

5. The Return.mp4

22.2 MB

/.../6. Recurrent Neural Networks, Time Series, and Sequence Data/

5. Recurrent Neural Networks.srt

26.2 KB

1. Sequence Data.srt

24.6 KB

12. Demo of the Long Distance Problem.srt

23.6 KB

9. GRU and LSTM (pt 1).srt

23.3 KB

15. Stock Return Predictions using LSTMs (pt 1).srt

16.1 KB

17. Stock Return Predictions using LSTMs (pt 3).srt

14.8 KB

10. GRU and LSTM (pt 2).srt

14.6 KB

3. Autoregressive Linear Model for Time Series Prediction.srt

14.6 KB

2. Forecasting.srt

13.7 KB

7. RNN for Time Series Prediction.srt

11.5 KB

12. Demo of the Long Distance Problem.mp4

130.1 MB

8. Paying Attention to Shapes.srt

10.1 KB

11. A More Challenging Sequence.srt

9.8 KB

18. Other Ways to Forecast.srt

7.4 KB

6. RNN Code Preparation.srt

7.3 KB

16. Stock Return Predictions using LSTMs (pt 2).srt

6.7 KB

13. RNN for Image Classification (Theory).srt

6.1 KB

4. Proof that the Linear Model Works.srt

4.7 KB

14. RNN for Image Classification (Code).srt

4.3 KB

1. Sequence Data.mp4

94.5 MB

5. Recurrent Neural Networks.mp4

87.0 MB

9. GRU and LSTM (pt 1).mp4

83.7 MB

7. RNN for Time Series Prediction.mp4

77.7 MB

3. Autoregressive Linear Model for Time Series Prediction.mp4

75.2 MB

17. Stock Return Predictions using LSTMs (pt 3).mp4

70.6 MB

15. Stock Return Predictions using LSTMs (pt 1).mp4

70.4 MB

11. A More Challenging Sequence.mp4

67.8 MB

8. Paying Attention to Shapes.mp4

55.0 MB

10. GRU and LSTM (pt 2).mp4

52.8 MB

2. Forecasting.mp4

49.0 MB

16. Stock Return Predictions using LSTMs (pt 2).mp4

34.6 MB

13. RNN for Image Classification (Theory).mp4

30.5 MB

18. Other Ways to Forecast.mp4

29.7 MB

14. RNN for Image Classification (Code).mp4

24.4 MB

6. RNN Code Preparation.mp4

19.3 MB

4. Proof that the Linear Model Works.mp4

17.0 MB

/.../4. Feedforward Artificial Neural Networks/

5. Activation Functions.srt

23.2 KB

2. Beginners Rejoice The Math in This Course is Optional.srt

17.4 KB

8. Code Preparation (ANN).srt

16.7 KB

7. How to Represent Images.srt

16.0 KB

10. ANN for Regression.srt

13.1 KB

3. Forward Propagation.srt

12.5 KB

4. The Geometrical Picture.srt

11.8 KB

6. Multiclass Classification.srt

11.2 KB

9. ANN for Image Classification.srt

10.2 KB

1. Artificial Neural Networks Section Introduction.srt

8.1 KB

5. Activation Functions.mp4

84.4 MB

7. How to Represent Images.mp4

73.9 MB

10. ANN for Regression.mp4

72.6 MB

2. Beginners Rejoice The Math in This Course is Optional.mp4

71.8 MB

4. The Geometrical Picture.mp4

59.2 MB

8. Code Preparation (ANN).mp4

53.4 MB

9. ANN for Image Classification.mp4

50.0 MB

3. Forward Propagation.mp4

49.0 MB

6. Multiclass Classification.mp4

43.4 MB

1. Artificial Neural Networks Section Introduction.mp4

31.3 MB

/.../19. Extra Help With Python Coding for Beginners (FAQ by Student Request)/

2. How to Code Yourself (part 1).srt

22.7 KB

1. Beginner's Coding Tips.srt

19.5 KB

4. Proof that using Jupyter Notebook is the same as not using it.srt

14.6 KB

3. How to Code Yourself (part 2).srt

13.3 KB

5. Is Theano Dead.srt

12.9 KB

1. Beginner's Coding Tips.mp4

79.4 MB

2. How to Code Yourself (part 1).mp4

75.3 MB

4. Proof that using Jupyter Notebook is the same as not using it.mp4

72.8 MB

3. How to Code Yourself (part 2).mp4

51.5 MB

5. Is Theano Dead.mp4

42.7 MB

/.../10. GANs (Generative Adversarial Networks)/

1. GAN Theory.srt

21.2 KB

2. GAN Code.srt

15.2 KB

1. GAN Theory.mp4

91.4 MB

2. GAN Code.mp4

82.1 MB

/.../13. Advanced Tensorflow Usage/

2. Tensorflow Serving pt 2.srt

20.9 KB

4. Why is Google the King of Distributed Computing.srt

11.5 KB

3. Tensorflow Lite (TFLite).srt

11.3 KB

5. Training with Distributed Strategies.srt

8.7 KB

1. What is a Web Service (Tensorflow Serving pt 1).srt

7.9 KB

6. Using the TPU.srt

7.1 KB

2. Tensorflow Serving pt 2.mp4

110.1 MB

6. Using the TPU.mp4

47.4 MB

4. Why is Google the King of Distributed Computing.mp4

47.1 MB

5. Training with Distributed Strategies.mp4

45.7 MB

3. Tensorflow Lite (TFLite).mp4

44.7 MB

1. What is a Web Service (Tensorflow Serving pt 1).mp4

29.1 MB

/8. Recommender Systems/

1. Recommender Systems with Deep Learning Theory.srt

17.8 KB

2. Recommender Systems with Deep Learning Code.srt

12.0 KB

1. Recommender Systems with Deep Learning Theory.mp4

72.0 MB

2. Recommender Systems with Deep Learning Code.mp4

61.7 MB

/.../7. Natural Language Processing (NLP)/

2. Code Preparation (NLP).srt

17.2 KB

1. Embeddings.srt

16.6 KB

5. CNNs for Text.srt

10.3 KB

4. Text Classification with LSTMs.srt

10.0 KB

6. Text Classification with CNNs.srt

6.8 KB

3. Text Preprocessing.srt

6.3 KB

2. Code Preparation (NLP).mp4

59.8 MB

1. Embeddings.mp4

55.1 MB

4. Text Classification with LSTMs.mp4

53.1 MB

5. CNNs for Text.mp4

42.4 MB

6. Text Classification with CNNs.mp4

41.5 MB

3. Text Preprocessing.mp4

30.2 MB

/.../16. In-Depth Gradient Descent/

5. Adam (pt 1).srt

17.1 KB

4. Variable and Adaptive Learning Rates.srt

15.5 KB

6. Adam (pt 2).srt

14.8 KB

1. Gradient Descent.srt

10.0 KB

3. Momentum.srt

8.0 KB

2. Stochastic Gradient Descent.srt

5.5 KB

5. Adam (pt 1).mp4

57.8 MB

6. Adam (pt 2).mp4

55.3 MB

1. Gradient Descent.mp4

36.6 MB

4. Variable and Adaptive Learning Rates.mp4

36.5 MB

3. Momentum.mp4

35.9 MB

2. Stochastic Gradient Descent.mp4

24.1 MB

/.../12. Stock Trading Project with Deep Reinforcement Learning/

2. Data and Environment.srt

16.1 KB

6. Code pt 2.srt

12.0 KB

10. Help! Why is the code slower on my machine.srt

12.0 KB

4. Program Design and Layout.srt

8.8 KB

8. Code pt 4.srt

8.6 KB

7. Code pt 3.srt

7.9 KB

5. Code pt 1.srt

7.4 KB

3. Replay Buffer.srt

7.1 KB

1. Reinforcement Learning Stock Trader Introduction.srt

7.0 KB

9. Reinforcement Learning Stock Trader Discussion.srt

4.5 KB

6. Code pt 2.mp4

71.3 MB

8. Code pt 4.mp4

55.1 MB

7. Code pt 3.mp4

54.6 MB

2. Data and Environment.mp4

53.4 MB

10. Help! Why is the code slower on my machine.mp4

44.5 MB

5. Code pt 1.mp4

41.5 MB

1. Reinforcement Learning Stock Trader Introduction.mp4

27.3 MB

4. Program Design and Layout.mp4

27.2 MB

3. Replay Buffer.mp4

25.2 MB

9. Reinforcement Learning Stock Trader Discussion.mp4

17.4 MB

/.../21. Appendix FAQ Finale/

1. What is the Appendix.srt

3.8 KB

2. BONUS Lecture.srt

8.1 KB

2. BONUS Lecture.mp4

39.6 MB

1. What is the Appendix.mp4

17.2 MB

/2. Google Colab/

1. Intro to Google Colab, how to use a GPU or TPU for free.srt

14.5 KB

3. Uploading your own data to Google Colab.srt

12.3 KB

4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.srt

11.8 KB

2. Tensorflow 2.0 in Google Colab.srt

9.7 KB

5. How to Succeed in this Course.srt

8.5 KB

3. Uploading your own data to Google Colab.mp4

77.2 MB

1. Intro to Google Colab, how to use a GPU or TPU for free.mp4

56.5 MB

5. How to Succeed in this Course.mp4

45.9 MB

2. Tensorflow 2.0 in Google Colab.mp4

42.6 MB

4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4

40.8 MB

/.../9. Transfer Learning for Computer Vision/

5. Transfer Learning Code (pt 1).srt

14.1 KB

1. Transfer Learning Theory.srt

10.9 KB

6. Transfer Learning Code (pt 2).srt

10.7 KB

3. Large Datasets and Data Generators.srt

9.0 KB

2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).srt

7.5 KB

4. 2 Approaches to Transfer Learning.srt

6.1 KB

5. Transfer Learning Code (pt 1).mp4

69.8 MB

1. Transfer Learning Theory.mp4

57.8 MB

6. Transfer Learning Code (pt 2).mp4

48.3 MB

3. Large Datasets and Data Generators.mp4

38.3 MB

2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp4

33.1 MB

4. 2 Approaches to Transfer Learning.mp4

21.6 MB

/.../14. Low-Level Tensorflow/

3. Variables and Gradient Tape.srt

13.9 KB

4. Build Your Own Custom Model.srt

13.6 KB

1. Differences Between Tensorflow 1.x and Tensorflow 2.x.srt

12.5 KB

2. Constants and Basic Computation.srt

9.9 KB

4. Build Your Own Custom Model.mp4

61.4 MB

3. Variables and Gradient Tape.mp4

58.8 MB

2. Constants and Basic Computation.mp4

42.3 MB

1. Differences Between Tensorflow 1.x and Tensorflow 2.x.mp4

40.6 MB

/.../15. In-Depth Loss Functions/

1. Mean Squared Error.srt

11.5 KB

3. Categorical Cross Entropy.srt

9.9 KB

2. Binary Cross Entropy.srt

7.4 KB

1. Mean Squared Error.mp4

35.4 MB

3. Categorical Cross Entropy.mp4

33.2 MB

2. Binary Cross Entropy.mp4

24.8 MB

/17. Extras/

1. How to Choose Hyperparameters.srt

8.9 KB

3. Links to TF2.0 Notebooks.html

8.3 KB

2. Where Are The Exercises.srt

5.5 KB

1. How to Choose Hyperparameters.mp4

39.8 MB

2. Where Are The Exercises.mp4

27.2 MB

 

Total files 403


Copyright © 2025 FileMood.com