FileMood

Download The Data Science Course Complete Data Science Bootcamp 2025 (Dec-2024)

The Data Science Course Complete Data Science Bootcamp 2025 Dec 2024

Name

The Data Science Course Complete Data Science Bootcamp 2025 (Dec-2024)

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

9.9 GB

Total Files

1493

Last Seen

2025-07-18 00:17

Hash

9A03EAE6885C6EACA8F516880C02705743F8EACA

/01. Part 1 Introduction/

01. A Practical Example What You Will Learn in This Course.mp4

11.3 MB

01. A Practical Example What You Will Learn in This Course.vtt

7.0 KB

02. What Does the Course Cover.mp4

10.0 MB

02. What Does the Course Cover.vtt

5.6 KB

03. Download All Resources and Important FAQ.html

21.9 KB

/assets/

03. FAQ-The-Data-Science-Course.pdf

313.4 KB

/02. The Field of Data Science - The Various Data Science Disciplines/

01. Data Science and Business Buzzwords Why are there so Many.mp4

16.3 MB

01. Data Science and Business Buzzwords Why are there so Many.vtt

7.5 KB

02. What is the difference between Analysis and Analytics.mp4

11.7 MB

02. What is the difference between Analysis and Analytics.vtt

5.2 KB

03. Business Analytics, Data Analytics, and Data Science An Introduction.mp4

15.3 MB

03. Business Analytics, Data Analytics, and Data Science An Introduction.vtt

9.9 KB

04. Continuing with BI, ML, and AI.mp4

49.9 MB

04. Continuing with BI, ML, and AI.vtt

13.4 KB

05. Traditional AI vs. Generative AI.mp4

25.7 MB

05. Traditional AI vs. Generative AI.vtt

7.1 KB

06. More Examples of Generative AI.mp4

32.0 MB

06. More Examples of Generative AI.vtt

7.0 KB

07. A Breakdown of our Data Science Infographic.mp4

47.6 MB

07. A Breakdown of our Data Science Infographic.vtt

5.2 KB

/assets/

03. 365-DataScience-Diagram.pdf

330.8 KB

04. 365-DataScience-Diagram.pdf

330.8 KB

04. 365-DataScience.png

7.3 MB

07. 365-DataScience.png

7.3 MB

/03. The Field of Data Science - Connecting the Data Science Disciplines/

01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4

87.6 MB

01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt

9.5 KB

/04. The Field of Data Science - The Benefits of Each Discipline/

01. The Reason Behind These Disciplines.mp4

49.0 MB

01. The Reason Behind These Disciplines.vtt

6.7 KB

/05. The Field of Data Science - Popular Data Science Techniques/

01. Techniques for Working with Traditional Data.mp4

112.4 MB

01. Techniques for Working with Traditional Data.vtt

11.2 KB

02. Real Life Examples of Traditional Data.mp4

19.3 MB

02. Real Life Examples of Traditional Data.vtt

2.4 KB

03. Techniques for Working with Big Data.mp4

65.1 MB

03. Techniques for Working with Big Data.vtt

6.0 KB

04. Real Life Examples of Big Data.mp4

13.7 MB

04. Real Life Examples of Big Data.vtt

1.9 KB

05. Business Intelligence (BI) Techniques.mp4

55.5 MB

05. Business Intelligence (BI) Techniques.vtt

9.0 KB

06. Real Life Examples of Business Intelligence (BI).mp4

25.8 MB

06. Real Life Examples of Business Intelligence (BI).vtt

2.3 KB

07. Techniques for Working with Traditional Methods.mp4

79.7 MB

07. Techniques for Working with Traditional Methods.vtt

11.8 KB

08. Real Life Examples of Traditional Methods.mp4

38.5 MB

08. Real Life Examples of Traditional Methods.vtt

5.5 KB

09. Machine Learning (ML) Techniques.mp4

51.8 MB

09. Machine Learning (ML) Techniques.vtt

9.5 KB

10. Types of Machine Learning.mp4

72.8 MB

10. Types of Machine Learning.vtt

11.2 KB

11. Evolution and Latest Trends of Machine Learning (ML).mp4

28.7 MB

11. Evolution and Latest Trends of Machine Learning (ML).vtt

7.9 KB

12. Real Life Examples of Machine Learning (ML).mp4

29.1 MB

12. Real Life Examples of Machine Learning (ML).vtt

3.1 KB

/06. The Field of Data Science - Popular Data Science Tools/

01. Necessary Programming Languages and Software Used in Data Science.mp4

86.4 MB

01. Necessary Programming Languages and Software Used in Data Science.vtt

8.2 KB

/07. The Field of Data Science - Careers in Data Science/

01. Finding the Job - What to Expect and What to Look for.mp4

42.0 MB

01. Finding the Job - What to Expect and What to Look for.vtt

4.8 KB

/08. The Field of Data Science - Debunking Common Misconceptions/

01. Debunking Common Misconceptions.mp4

61.7 MB

01. Debunking Common Misconceptions.vtt

5.7 KB

/09. Part 2 Probability/

01. The Basic Probability Formula.mp4

30.8 MB

01. The Basic Probability Formula.vtt

9.2 KB

02. Computing Expected Values.mp4

47.9 MB

02. Computing Expected Values.vtt

7.1 KB

03. Frequency.mp4

39.2 MB

03. Frequency.vtt

7.1 KB

04. Events and Their Complements.mp4

27.1 MB

04. Events and Their Complements.vtt

7.3 KB

/assets/

01. Course-Notes-Basic-Probability.pdf

380.0 KB

/10. Probability - Combinatorics/

01. Fundamentals of Combinatorics.mp4

6.2 MB

01. Fundamentals of Combinatorics.vtt

1.5 KB

02. Permutations and How to Use Them.mp4

18.4 MB

02. Permutations and How to Use Them.vtt

4.5 KB

03. Simple Operations with Factorials.mp4

11.0 MB

03. Simple Operations with Factorials.vtt

3.5 KB

04. Solving Variations with Repetition.mp4

14.6 MB

04. Solving Variations with Repetition.vtt

3.8 KB

05. Solving Variations without Repetition.mp4

19.1 MB

05. Solving Variations without Repetition.vtt

5.1 KB

06. Solving Combinations.mp4

24.8 MB

06. Solving Combinations.vtt

6.2 KB

07. Symmetry of Combinations.mp4

14.4 MB

07. Symmetry of Combinations.vtt

4.6 KB

08. Solving Combinations with Separate Sample Spaces.mp4

21.3 MB

08. Solving Combinations with Separate Sample Spaces.vtt

4.2 KB

09. Combinatorics in Real-Life The Lottery.mp4

17.2 MB

09. Combinatorics in Real-Life The Lottery.vtt

4.3 KB

10. A Recap of Combinatorics.mp4

12.7 MB

10. A Recap of Combinatorics.vtt

3.9 KB

11. A Practical Example of Combinatorics.mp4

84.6 MB

11. A Practical Example of Combinatorics.vtt

15.5 KB

/assets/

01. Course-Notes-Combinatorics.pdf

231.5 KB

06. Combinations-With-Repetition.pdf

212.4 KB

07. Symmetry-Explained.pdf

87.1 KB

11. Additional-Exercises-Combinatorics-Solutions.pdf

251.6 KB

11. Additional-Exercises-Combinatorics.pdf

109.1 KB

/11. Probability - Bayesian Inference/

01. Sets and Events.mp4

18.5 MB

01. Sets and Events.vtt

5.6 KB

02. Ways Sets Can Interact.mp4

11.9 MB

02. Ways Sets Can Interact.vtt

4.7 KB

03. Intersection of Sets.mp4

11.6 MB

03. Intersection of Sets.vtt

2.7 KB

04. Union of Sets.mp4

25.4 MB

04. Union of Sets.vtt

6.4 KB

05. Mutually Exclusive Sets.mp4

11.1 MB

05. Mutually Exclusive Sets.vtt

2.8 KB

06. Dependence and Independence of Sets.mp4

15.6 MB

06. Dependence and Independence of Sets.vtt

3.6 KB

07. The Conditional Probability Formula.mp4

21.0 MB

07. The Conditional Probability Formula.vtt

6.0 KB

08. The Law of Total Probability.mp4

14.9 MB

08. The Law of Total Probability.vtt

4.0 KB

09. The Additive Rule.mp4

11.6 MB

09. The Additive Rule.vtt

2.7 KB

10. The Multiplication Law.mp4

21.2 MB

10. The Multiplication Law.vtt

4.8 KB

11. Bayes' Law.mp4

22.4 MB

11. Bayes' Law.vtt

7.9 KB

12. A Practical Example of Bayesian Inference.mp4

146.0 MB

12. A Practical Example of Bayesian Inference.vtt

20.6 KB

/assets/

01. Course-Notes-Bayesian-Inference.pdf

395.3 KB

12. Bayesian-Homework-Solutions.pdf

31.1 KB

12. Bayesian-Homework.pdf

27.9 KB

12. CDS-2017-2018-Hamilton.pdf

865.6 KB

/12. Probability - Distributions/

01. Fundamentals of Probability Distributions.mp4

20.4 MB

01. Fundamentals of Probability Distributions.vtt

8.6 KB

02. Types of Probability Distributions.mp4

37.3 MB

02. Types of Probability Distributions.vtt

10.7 KB

03. Characteristics of Discrete Distributions.mp4

9.9 MB

03. Characteristics of Discrete Distributions.vtt

2.6 KB

04. Discrete Distributions The Uniform Distribution.mp4

10.8 MB

04. Discrete Distributions The Uniform Distribution.vtt

3.0 KB

05. Discrete Distributions The Bernoulli Distribution.mp4

15.9 MB

05. Discrete Distributions The Bernoulli Distribution.vtt

5.3 KB

06. Discrete Distributions The Binomial Distribution.mp4

32.1 MB

06. Discrete Distributions The Binomial Distribution.vtt

9.0 KB

07. Discrete Distributions The Poisson Distribution.mp4

25.1 MB

07. Discrete Distributions The Poisson Distribution.vtt

7.4 KB

08. Characteristics of Continuous Distributions.mp4

22.3 MB

08. Characteristics of Continuous Distributions.vtt

9.4 KB

09. Continuous Distributions The Normal Distribution.mp4

21.0 MB

09. Continuous Distributions The Normal Distribution.vtt

5.2 KB

10. Continuous Distributions The Standard Normal Distribution.mp4

22.1 MB

10. Continuous Distributions The Standard Normal Distribution.vtt

5.9 KB

11. Continuous Distributions The Students' T Distribution.mp4

9.7 MB

11. Continuous Distributions The Students' T Distribution.vtt

3.3 KB

12. Continuous Distributions The Chi-Squared Distribution.mp4

11.7 MB

12. Continuous Distributions The Chi-Squared Distribution.vtt

3.1 KB

13. Continuous Distributions The Exponential Distribution.mp4

16.8 MB

13. Continuous Distributions The Exponential Distribution.vtt

4.6 KB

14. Continuous Distributions The Logistic Distribution.mp4

17.0 MB

14. Continuous Distributions The Logistic Distribution.vtt

5.5 KB

15. A Practical Example of Probability Distributions.mp4

145.0 MB

15. A Practical Example of Probability Distributions.vtt

21.6 KB

/assets/

01. Course-Notes-Probability-Distributions.pdf

475.1 KB

07. Poisson-Expected-Value-and-Variance.pdf

149.5 KB

08. Solving-Integrals.pdf

352.1 KB

09. Normal-Distribution-Exp-and-Var.pdf

147.5 KB

15. Customers-Membership-post.xlsx

16.0 KB

15. Customers-Membership.xlsx

9.9 KB

15. Daily-Views-post.xlsx

20.7 KB

15. Daily-Views.xlsx

9.8 KB

15. FIFA19-post.csv

9.1 MB

15. FIFA19.csv

9.1 MB

/13. Probability - Probability in Other Fields/

01. Probability in Finance.mp4

42.3 MB

01. Probability in Finance.vtt

10.3 KB

02. Probability in Statistics.mp4

33.1 MB

02. Probability in Statistics.vtt

9.3 KB

03. Probability in Data Science.mp4

14.9 MB

03. Probability in Data Science.vtt

7.3 KB

/assets/

01. Probability-in-Finance-Homework.pdf

113.3 KB

01. Probability-in-Finance-Solutions.pdf

188.9 KB

03. Probability-Cheat-Sheet.pdf

328.0 KB

/14. Part 3 Statistics/

01. Population and Sample.mp4

36.8 MB

01. Population and Sample.vtt

6.0 KB

/assets/

01. Course-notes-descriptive-statistics.pdf

493.8 KB

01. Statistics-Glossary.xlsx

20.8 KB

/15. Statistics - Descriptive Statistics/

01. Types of Data.mp4

45.3 MB

01. Types of Data.vtt

6.0 KB

02. Levels of Measurement.mp4

33.8 MB

02. Levels of Measurement.vtt

4.9 KB

03. Categorical Variables - Visualization Techniques.mp4

28.8 MB

03. Categorical Variables - Visualization Techniques.vtt

6.9 KB

04. Categorical Variables Exercise.html

0.1 KB

05. Numerical Variables - Frequency Distribution Table.mp4

18.6 MB

05. Numerical Variables - Frequency Distribution Table.vtt

4.6 KB

06. Numerical Variables Exercise.html

0.1 KB

07. The Histogram.mp4

10.0 MB

07. The Histogram.vtt

3.4 KB

08. Histogram Exercise.html

0.1 KB

09. Cross Tables and Scatter Plots.mp4

20.7 MB

09. Cross Tables and Scatter Plots.vtt

7.1 KB

10. Cross Tables and Scatter Plots Exercise.html

0.1 KB

11. Mean, median and mode.mp4

25.7 MB

11. Mean, median and mode.vtt

6.1 KB

12. Mean, Median and Mode Exercise.html

0.1 KB

13. Skewness.mp4

14.0 MB

13. Skewness.vtt

3.8 KB

14. Skewness Exercise.html

0.1 KB

15. Variance.mp4

24.7 MB

15. Variance.vtt

8.4 KB

16. Variance Exercise.html

0.5 KB

17. Standard Deviation and Coefficient of Variation.mp4

21.1 MB

17. Standard Deviation and Coefficient of Variation.vtt

6.5 KB

18. Standard Deviation and Coefficient of Variation Exercise.html

0.1 KB

19. Covariance.mp4

19.3 MB

19. Covariance.vtt

5.2 KB

20. Covariance Exercise.html

0.1 KB

21. Correlation Coefficient.mp4

20.3 MB

21. Correlation Coefficient.vtt

5.1 KB

22. Correlation Coefficient Exercise.html

0.1 KB

/assets/

01. Course-notes-descriptive-statistics.pdf

493.8 KB

01. Glossary.xlsx

20.4 KB

03. 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx

31.5 KB

04. 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx

42.1 KB

04. 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx

15.6 KB

04. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf

296.1 KB

05. 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx

11.7 KB

06. 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx

13.5 KB

07. 2.5.The-Histogram-lesson.xlsx

19.1 KB

08. 2.5.The-Histogram-exercise-solution.xlsx

17.5 KB

08. 2.5.The-Histogram-exercise.xlsx

15.9 KB

08. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf

296.1 KB

09. 2.6.Cross-table-and-scatter-plot.xlsx

26.7 KB

10. 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx

41.4 KB

10. 2.6.Cross-table-and-scatter-plot-exercise.xlsx

16.7 KB

11. 2.7.Mean-median-and-mode-lesson.xlsx

10.7 KB

12. 2.7.Mean-median-and-mode-exercise-solution.xlsx

11.6 KB

12. 2.7.Mean-median-and-mode-exercise.xlsx

11.1 KB

13. 2.8.Skewness-lesson.xlsx

35.5 KB

14. 2.8.Skewness-exercise-solution.xlsx

20.3 KB

14. 2.8.Skewness-exercise.xlsx

9.7 KB

15. 2.9.Variance-lesson.xlsx

10.3 KB

16. 2.9.Variance-exercise-solution.xlsx

11.3 KB

16. 2.9.Variance-exercise.xlsx

11.1 KB

17. 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx

11.2 KB

18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx

12.9 KB

18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx

11.9 KB

19. 2.11.Covariance-lesson.xlsx

25.5 KB

20. 2.11.Covariance-exercise-solution.xlsx

30.2 KB

20. 2.11.Covariance-exercise.xlsx

20.7 KB

22. 2.12.Correlation-exercise-solution.xlsx

30.2 KB

22. 2.12.Correlation-exercise.xlsx

30.0 KB

/16. Statistics - Practical Example Descriptive Statistics/

01. Practical Example Descriptive Statistics.mp4

136.9 MB

01. Practical Example Descriptive Statistics.vtt

21.5 KB

02. Practical Example Descriptive Statistics Exercise.html

0.1 KB

/assets/

01. 2.13.Practical-example.Descriptive-statistics-lesson.xlsx

150.0 KB

02. 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx

149.9 KB

02. 2.13.Practical-example.Descriptive-statistics-exercise.xlsx

123.2 KB

/17. Statistics - Inferential Statistics Fundamentals/

01. Introduction.mp4

3.2 MB

01. Introduction.vtt

1.7 KB

02. What is a Distribution.mp4

18.0 MB

02. What is a Distribution.vtt

6.0 KB

03. The Normal Distribution.mp4

13.7 MB

03. The Normal Distribution.vtt

5.3 KB

04. The Standard Normal Distribution.mp4

9.0 MB

04. The Standard Normal Distribution.vtt

4.1 KB

05. The Standard Normal Distribution Exercise.html

0.1 KB

06. Central Limit Theorem.mp4

24.3 MB

06. Central Limit Theorem.vtt

5.7 KB

07. Standard error.mp4

14.2 MB

07. Standard error.vtt

2.1 KB

08. Estimators and Estimates.mp4

29.0 MB

08. Estimators and Estimates.vtt

4.1 KB

/assets/

01. Course-notes-inferential-statistics.pdf

391.5 KB

02. 3.2.What-is-a-distribution-lesson.xlsx

19.9 KB

02. Course-notes-inferential-statistics.pdf

391.5 KB

04. 3.4.Standard-normal-distribution-lesson.xlsx

10.6 KB

05. 3.4.Standard-normal-distribution-exercise-solution.xlsx

24.6 KB

05. 3.4.Standard-normal-distribution-exercise.xlsx

12.3 KB

/18. Statistics - Inferential Statistics Confidence Intervals/

01. What are Confidence Intervals.mp4

30.0 MB

01. What are Confidence Intervals.vtt

3.3 KB

02. Confidence Intervals; Population Variance Known; Z-score.mp4

54.7 MB

02. Confidence Intervals; Population Variance Known; Z-score.vtt

9.8 KB

03. Confidence Intervals; Population Variance Known; Z-score; Exercise.html

0.1 KB

04. Confidence Interval Clarifications.mp4

19.9 MB

04. Confidence Interval Clarifications.vtt

5.7 KB

05. Student's T Distribution.mp4

14.3 MB

05. Student's T Distribution.vtt

4.7 KB

06. Confidence Intervals; Population Variance Unknown; T-score.mp4

14.4 MB

06. Confidence Intervals; Population Variance Unknown; T-score.vtt

5.5 KB

07. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html

0.1 KB

08. Margin of Error.mp4

24.2 MB

08. Margin of Error.vtt

6.6 KB

09. Confidence intervals. Two means. Dependent samples.mp4

47.2 MB

09. Confidence intervals. Two means. Dependent samples.vtt

8.7 KB

10. Confidence intervals. Two means. Dependent samples Exercise.html

0.1 KB

11. Confidence intervals. Two means. Independent Samples (Part 1).mp4

12.6 MB

11. Confidence intervals. Two means. Independent Samples (Part 1).vtt

6.4 KB

12. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html

0.1 KB

13. Confidence intervals. Two means. Independent Samples (Part 2).mp4

15.3 MB

13. Confidence intervals. Two means. Independent Samples (Part 2).vtt

4.8 KB

14. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html

0.1 KB

15. Confidence intervals. Two means. Independent Samples (Part 3).mp4

7.2 MB

15. Confidence intervals. Two means. Independent Samples (Part 3).vtt

2.1 KB

/assets/

02. 3.9.Population-variance-known-z-score-lesson.xlsx

11.5 KB

02. 3.9.The-z-table.xlsx

26.2 KB

03. 3.9.Population-variance-known-z-score-exercise-solution.xlsx

11.4 KB

03. 3.9.Population-variance-known-z-score-exercise.xlsx

11.1 KB

03. 3.9.The-z-table.xlsx

26.2 KB

06. 3.11.Population-variance-unknown-t-score-lesson.xlsx

11.0 KB

06. 3.11.The-t-table.xlsx

16.2 KB

07. 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx

11.4 KB

07. 3.11.Population-variance-unknown-t-score-exercise.xlsx

10.9 KB

07. 3.11.The-t-table.xlsx

16.2 KB

09. 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx

10.7 KB

10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx

14.6 KB

10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx

14.1 KB

11. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx

10.1 KB

12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx

10.4 KB

12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx

10.1 KB

13. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx

9.7 KB

14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx

10.0 KB

14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx

9.4 KB

/19. Statistics - Practical Example Inferential Statistics/

01. Practical Example Inferential Statistics.mp4

72.4 MB

01. Practical Example Inferential Statistics.vtt

14.2 KB

02. Practical Example Inferential Statistics Exercise.html

0.1 KB

/assets/

01. 3.17.Practical-example.Confidence-intervals-lesson.xlsx

1.8 MB

02. 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx

1.9 MB

02. 3.17.Practical-example.Confidence-intervals-exercise.xlsx

1.8 MB

/20. Statistics - Hypothesis Testing/

01. Null vs Alternative Hypothesis.mp4

33.5 MB

01. Null vs Alternative Hypothesis.vtt

7.3 KB

02. Further Reading on Null and Alternative Hypothesis.html

2.3 KB

03. Rejection Region and Significance Level.mp4

40.6 MB

03. Rejection Region and Significance Level.vtt

8.8 KB

04. Type I Error and Type II Error.mp4

16.0 MB

04. Type I Error and Type II Error.vtt

5.6 KB

05. Test for the Mean. Population Variance Known.mp4

38.7 MB

05. Test for the Mean. Population Variance Known.vtt

8.3 KB

06. Test for the Mean. Population Variance Known Exercise.html

0.1 KB

07. p-value.mp4

35.4 MB

07. p-value.vtt

5.4 KB

08. Test for the Mean. Population Variance Unknown.mp4

20.7 MB

08. Test for the Mean. Population Variance Unknown.vtt

6.1 KB

09. Test for the Mean. Population Variance Unknown Exercise.html

0.1 KB

10. Test for the Mean. Dependent Samples.mp4

34.4 MB

10. Test for the Mean. Dependent Samples.vtt

6.9 KB

11. Test for the Mean. Dependent Samples Exercise.html

0.1 KB

12. Test for the mean. Independent Samples (Part 1).mp4

16.2 MB

12. Test for the mean. Independent Samples (Part 1).vtt

5.6 KB

13. Test for the mean. Independent Samples (Part 1). Exercise.html

0.1 KB

14. Test for the mean. Independent Samples (Part 2).mp4

25.6 MB

14. Test for the mean. Independent Samples (Part 2).vtt

5.5 KB

15. Test for the mean. Independent Samples (Part 2). Exercise.html

0.1 KB

/assets/

01. Course-notes-hypothesis-testing.pdf

672.2 KB

03. Course-notes-hypothesis-testing.pdf

672.2 KB

05. 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx

11.2 KB

06. 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx

11.5 KB

06. 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx

11.3 KB

07. Online-p-value-calculator.pdf

1.2 MB

08. 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx

14.9 KB

09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx

12.9 KB

09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx

11.6 KB

10. 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx

10.0 KB

11. 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx

14.7 KB

11. 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx

13.1 KB

12. 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx

9.9 KB

13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx

11.5 KB

13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx

11.0 KB

14. 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx

9.5 KB

15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx

11.7 KB

15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx

10.8 KB

/21. Statistics - Practical Example Hypothesis Testing/

01. Practical Example Hypothesis Testing.mp4

48.1 MB

01. Practical Example Hypothesis Testing.vtt

8.8 KB

02. Practical Example Hypothesis Testing Exercise.html

0.1 KB

/assets/

01. 4.10.Hypothesis-testing-section-practical-example.xlsx

53.1 KB

02. 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx

45.3 KB

02. 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx

44.7 KB

/22. Part 4 Introduction to Python/

01. Introduction to Programming.mp4

15.6 MB

01. Introduction to Programming.vtt

7.5 KB

02. Why Python.mp4

12.8 MB

02. Why Python.vtt

7.3 KB

03. Why Jupyter.mp4

8.4 MB

03. Why Jupyter.vtt

4.3 KB

04. Installing Python and Jupyter.mp4

19.7 MB

04. Installing Python and Jupyter.vtt

5.0 KB

05. Understanding Jupyter's Interface - the Notebook Dashboard.mp4

6.4 MB

05. Understanding Jupyter's Interface - the Notebook Dashboard.vtt

3.8 KB

06. Prerequisites for Coding in the Jupyter Notebooks.mp4

19.9 MB

06. Prerequisites for Coding in the Jupyter Notebooks.vtt

8.1 KB

/assets/

01. Introduction-to-Python-Course-Notes.pdf

2.3 MB

/23. Python - Variables and Data Types/

01. Variables.mp4

9.4 MB

01. Variables.vtt

4.9 KB

02. Numbers and Boolean Values in Python.mp4

6.9 MB

02. Numbers and Boolean Values in Python.vtt

3.8 KB

03. Python Strings.mp4

20.7 MB

03. Python Strings.vtt

7.8 KB

/assets/

01. Introduction-to-Python-Course-Notes.pdf

2.3 MB

01. Variables-Exercise-Py3.ipynb

2.3 KB

01. Variables-Lecture-Py3.ipynb

3.7 KB

01. Variables-Solution-Py3.ipynb

3.9 KB

02. Numbers-and-Boolean-Values-Exercise-Py3.ipynb

2.3 KB

02. Numbers-and-Boolean-Values-Lecture-Py3.ipynb

3.4 KB

02. Numbers-and-Boolean-Values-Solution-Py3.ipynb

3.3 KB

03. Strings-Exercise-Py3.ipynb

2.7 KB

03. Strings-Lecture-Py3.ipynb

7.7 KB

03. Strings-Solution-Py3.ipynb

5.6 KB

/24. Python - Basic Python Syntax/

01. Using Arithmetic Operators in Python.mp4

9.0 MB

01. Using Arithmetic Operators in Python.vtt

4.5 KB

02. The Double Equality Sign.mp4

2.8 MB

02. The Double Equality Sign.vtt

1.9 KB

03. How to Reassign Values.mp4

2.0 MB

03. How to Reassign Values.vtt

1.4 KB

04. Add Comments.mp4

2.5 MB

04. Add Comments.vtt

2.0 KB

05. Understanding Line Continuation.mp4

1.3 MB

05. Understanding Line Continuation.vtt

1.2 KB

06. Indexing Elements.mp4

2.5 MB

06. Indexing Elements.vtt

1.7 KB

07. Structuring with Indentation.mp4

2.9 MB

07. Structuring with Indentation.vtt

2.4 KB

/assets/

01. Arithmetic-Operators-Exercise-Py3.ipynb

2.7 KB

01. Arithmetic-Operators-Lecture-Py3.ipynb

3.6 KB

01. Arithmetic-Operators-Solution-Py3.ipynb

4.3 KB

02. The-Double-Equality-Sign-Exercise-Py3.ipynb

0.8 KB

02. The-Double-Equality-Sign-Lecture-Py3.ipynb

1.5 KB

02. The-Double-Equality-Sign-Solution-Py3.ipynb

1.2 KB

03. Reassign-Values-Exercise-Py3.ipynb

1.7 KB

03. Reassign-Values-Lecture-Py3.ipynb

3.2 KB

03. Reassign-Values-Solution-Py3.ipynb

2.2 KB

04. Add-Comments-Lecture-Py3.ipynb

1.1 KB

05. Line-Continuation-Exercise-Py3.ipynb

1.2 KB

05. Line-Continuation-Lecture-Py3.ipynb

0.8 KB

05. Line-Continuation-Solution-Py3.ipynb

1.5 KB

06. Indexing-Elements-Exercise-Py3.ipynb

1.4 KB

06. Indexing-Elements-Lecture-Py3.ipynb

1.3 KB

06. Indexing-Elements-Solution-Py3.ipynb

2.2 KB

07. Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb

1.0 KB

07. Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb

1.0 KB

07. Structure-Your-Code-with-Indentation-Solution-Py3.ipynb

1.5 KB

/25. Python - Other Python Operators/

01. Comparison Operators.mp4

4.4 MB

01. Comparison Operators.vtt

2.6 KB

02. Logical and Identity Operators.mp4

19.9 MB

02. Logical and Identity Operators.vtt

6.1 KB

/assets/

01. Comparison-Operators-Exercise-Py3.ipynb

1.6 KB

01. Comparison-Operators-Lecture-Py3.ipynb

2.6 KB

01. Comparison-Operators-Solution-Py3.ipynb

2.5 KB

02. Logical-and-Identity-Operators-Lecture-Py3.ipynb

6.0 KB

02. Logical-and-Identity-Operators-Solution-Py3.ipynb

3.5 KB

/26. Python - Conditional Statements/

01. The IF Statement.mp4

7.0 MB

01. The IF Statement.vtt

3.8 KB

02. The ELSE Statement.mp4

6.3 MB

02. The ELSE Statement.vtt

3.3 KB

03. The ELIF Statement.mp4

14.9 MB

03. The ELIF Statement.vtt

7.0 KB

04. A Note on Boolean Values.mp4

4.4 MB

04. A Note on Boolean Values.vtt

3.2 KB

/assets/

01. Introduction-to-the-If-Statement-Exercise-Py3.ipynb

1.6 KB

01. Introduction-to-the-If-Statement-Lecture-Py3.ipynb

1.2 KB

01. Introduction-to-the-If-Statement-Solution-Py3.ipynb

2.2 KB

02. Add-an-Else-Statement-Exercise-Py3.ipynb

1.0 KB

02. Add-an-Else-Statement-Lecture-Py3.ipynb

1.8 KB

02. Add-an-Else-Statement-Solution-Py3.ipynb

1.4 KB

03. Else-If-for-Brief-Elif-Exercise-Py3.ipynb

1.8 KB

03. Else-If-for-Brief-Elif-Lecture-Py3.ipynb

3.3 KB

03. Else-If-for-Brief-Elif-Solution-Py3.ipynb

2.5 KB

04. A-Note-on-Boolean-Values-Lecture-Py3.ipynb

0.8 KB

/27. Python - Python Functions/

01. Defining a Function in Python.mp4

3.4 MB

01. Defining a Function in Python.vtt

2.7 KB

02. How to Create a Function with a Parameter.mp4

10.5 MB

02. How to Create a Function with a Parameter.vtt

4.6 KB

03. Defining a Function in Python - Part II.mp4

6.8 MB

03. Defining a Function in Python - Part II.vtt

3.1 KB

04. How to Use a Function within a Function.mp4

3.4 MB

04. How to Use a Function within a Function.vtt

2.1 KB

05. Conditional Statements and Functions.mp4

6.3 MB

05. Conditional Statements and Functions.vtt

3.7 KB

06. Functions Containing a Few Arguments.mp4

2.9 MB

06. Functions Containing a Few Arguments.vtt

1.5 KB

07. Built-in Functions in Python.mp4

10.7 MB

07. Built-in Functions in Python.vtt

4.4 KB

/assets/

01. Defining-a-Function-in-Python-Lecture-Py3.ipynb

0.9 KB

02. Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb

1.2 KB

02. Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb

1.6 KB

02. Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb

1.8 KB

03. Another-Way-to-Define-a-Function-Exercise-Py3.ipynb

1.3 KB

03. Another-Way-to-Define-a-Function-Lecture-Py3.ipynb

3.4 KB

03. Another-Way-to-Define-a-Function-Solution-Py3.ipynb

2.0 KB

04. 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb

1.1 KB

04. 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb

1.0 KB

04. 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb

1.6 KB

05. Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb

1.1 KB

05. Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb

1.3 KB

05. Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb

1.7 KB

06. Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb

1.8 KB

07. Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb

3.7 KB

07. Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb

4.6 KB

07. Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb

5.7 KB

/28. Python - Sequences/

01. Lists.mp4

24.2 MB

01. Lists.vtt

10.6 KB

02. Using Methods.mp4

31.8 MB

02. Using Methods.vtt

8.9 KB

03. List Slicing.mp4

20.1 MB

03. List Slicing.vtt

5.7 KB

04. Tuples.mp4

19.1 MB

04. Tuples.vtt

7.7 KB

05. Dictionaries.mp4

34.0 MB

05. Dictionaries.vtt

9.1 KB

/assets/

01. Lists-Exercise-Py3.ipynb

2.2 KB

01. Lists-Lecture-Py3.ipynb

2.8 KB

01. Lists-Solution-Py3.ipynb

3.3 KB

02. Help-Yourself-with-Methods-Exercise-Py3.ipynb

2.0 KB

02. Help-Yourself-with-Methods-Lecture-Py3.ipynb

4.5 KB

02. Help-Yourself-with-Methods-Solution-Py3.ipynb

2.9 KB

03. List-Slicing-Exercise-Py3.ipynb

2.9 KB

03. List-Slicing-Lecture-Py3.ipynb

5.1 KB

03. List-Slicing-Solution-Py3.ipynb

4.4 KB

04. Tuples-Exercise-Py3.ipynb

2.1 KB

04. Tuples-Lecture-Py3.ipynb

3.0 KB

04. Tuples-Solution-Py3.ipynb

4.7 KB

05. Dictionaries-Exercise-Py3.ipynb

3.0 KB

05. Dictionaries-Lecture-Py3.ipynb

4.5 KB

05. Dictionaries-Solution-Py3.ipynb

6.3 KB

/29. Python - Iterations/

01. For Loops.mp4

13.6 MB

01. For Loops.vtt

6.9 KB

02. While Loops and Incrementing.mp4

21.2 MB

02. While Loops and Incrementing.vtt

6.2 KB

03. Lists with the range() Function.mp4

16.8 MB

03. Lists with the range() Function.vtt

8.8 KB

04. Conditional Statements and Loops.mp4

18.2 MB

04. Conditional Statements and Loops.vtt

8.2 KB

05. Conditional Statements, Functions, and Loops.mp4

4.5 MB

05. Conditional Statements, Functions, and Loops.vtt

2.5 KB

06. How to Iterate over Dictionaries.mp4

19.3 MB

06. How to Iterate over Dictionaries.vtt

8.0 KB

/assets/

01. For-Loops-Exercise-Py3.ipynb

1.3 KB

01. For-Loops-Lecture-Py3.ipynb

1.3 KB

01. For-Loops-Solution-Py3.ipynb

1.8 KB

02. While-Loops-and-Incrementing-Exercise-Py3.ipynb

1.1 KB

02. While-Loops-and-Incrementing-Lecture-Py3.ipynb

1.1 KB

02. While-Loops-and-Incrementing-Solution-Py3.ipynb

1.8 KB

03. Create-Lists-with-the-range-Function-Exercise-Py3.ipynb

1.5 KB

03. Create-Lists-with-the-range-Function-Lecture-Py3.ipynb

1.4 KB

03. Create-Lists-with-the-range-Function-Solution-Py3.ipynb

2.3 KB

04. Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb

2.1 KB

04. Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb

2.0 KB

04. Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb

3.0 KB

05. All-In-Exercise-Py3.ipynb

1.3 KB

05. All-In-Lecture-Py3.ipynb

1.7 KB

05. All-In-Solution-Py3.ipynb

1.9 KB

06. Iterating-over-Dictionaries-Exercise-Py3.ipynb

2.2 KB

06. Iterating-over-Dictionaries-Lecture-Py3.ipynb

1.1 KB

06. Iterating-over-Dictionaries-Solution-Py3.ipynb

2.9 KB

/30. Python - Advanced Python Tools/

01. Object Oriented Programming.mp4

9.1 MB

01. Object Oriented Programming.vtt

7.0 KB

02. Modules and Packages.mp4

2.2 MB

02. Modules and Packages.vtt

1.5 KB

03. What is the Standard Library.mp4

5.3 MB

03. What is the Standard Library.vtt

4.0 KB

04. Importing Modules in Python.mp4

10.4 MB

04. Importing Modules in Python.vtt

5.0 KB

/31. Part 5 Advanced Statistical Methods in Python/

01. Introduction to Regression Analysis.mp4

3.8 MB

01. Introduction to Regression Analysis.vtt

2.4 KB

/assets/

01. Course-notes-regression-analysis.pdf

319.7 KB

/32. Advanced Statistical Methods - Linear Regression with StatsModels/

01. The Linear Regression Model.mp4

14.1 MB

01. The Linear Regression Model.vtt

8.3 KB

02. Correlation vs Regression.mp4

4.0 MB

02. Correlation vs Regression.vtt

2.2 KB

03. Geometrical Representation of the Linear Regression Model.mp4

2.4 MB

03. Geometrical Representation of the Linear Regression Model.vtt

1.8 KB

04. Python Packages Installation.mp4

24.8 MB

04. Python Packages Installation.vtt

5.7 KB

05. First Regression in Python.mp4

31.0 MB

05. First Regression in Python.vtt

8.4 KB

06. First Regression in Python Exercise.html

1.4 KB

07. Using Seaborn for Graphs.mp4

7.7 MB

07. Using Seaborn for Graphs.vtt

1.6 KB

08. How to Interpret the Regression Table.mp4

30.1 MB

08. How to Interpret the Regression Table.vtt

6.5 KB

09. Decomposition of Variability.mp4

9.2 MB

09. Decomposition of Variability.vtt

4.6 KB

10. What is the OLS.mp4

23.6 MB

10. What is the OLS.vtt

3.9 KB

11. R-Squared.mp4

11.7 MB

11. R-Squared.vtt

7.0 KB

/assets/

01. Course-notes-regression-analysis.pdf

319.7 KB

05. 1.01.Simple-linear-regression.csv

0.9 KB

05. Simple-linear-regression-with-comments.ipynb

4.2 KB

05. Simple-linear-regression.ipynb

3.9 KB

06. real-estate-price-size.csv

1.9 KB

06. Simple-Linear-Regression-Exercise-Solution.ipynb

3.7 KB

06. Simple-Linear-Regression-Exercise.ipynb

2.8 KB

/33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/

01. Multiple Linear Regression.mp4

6.0 MB

01. Multiple Linear Regression.vtt

3.5 KB

02. Adjusted R-Squared.mp4

35.9 MB

02. Adjusted R-Squared.vtt

7.7 KB

03. Multiple Linear Regression Exercise.html

0.1 KB

04. Test for Significance of the Model (F-Test).mp4

7.5 MB

04. Test for Significance of the Model (F-Test).vtt

2.5 KB

05. OLS Assumptions.mp4

5.5 MB

05. OLS Assumptions.vtt

3.1 KB

06. A1 Linearity.mp4

3.7 MB

06. A1 Linearity.vtt

2.5 KB

07. A2 No Endogeneity.mp4

9.7 MB

07. A2 No Endogeneity.vtt

5.7 KB

08. A3 Normality and Homoscedasticity.mp4

28.7 MB

08. A3 Normality and Homoscedasticity.vtt

7.2 KB

09. A4 No Autocorrelation.mp4

8.3 MB

09. A4 No Autocorrelation.vtt

5.1 KB

10. A5 No Multicollinearity.mp4

8.0 MB

10. A5 No Multicollinearity.vtt

4.7 KB

11. Dealing with Categorical Data - Dummy Variables.mp4

23.7 MB

11. Dealing with Categorical Data - Dummy Variables.vtt

9.8 KB

12. Dealing with Categorical Data - Dummy Variables.html

0.1 KB

13. Making Predictions with the Linear Regression.mp4

17.1 MB

13. Making Predictions with the Linear Regression.vtt

4.5 KB

/assets/

02. 1.02.Multiple-linear-regression.csv

1.1 KB

02. Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb

2.9 KB

02. Multiple-linear-regression-and-Adjusted-R-squared.ipynb

2.2 KB

03. Multiple-Linear-Regression-Exercise-Solution.ipynb

13.7 KB

03. Multiple-Linear-Regression-Exercise.ipynb

2.5 KB

03. real-estate-price-size-year.csv

2.4 KB

11. 1.03.Dummies.csv

1.2 KB

11. Dummy-variables-with-comments.ipynb

7.3 KB

11. Dummy-Variables.ipynb

4.7 KB

12. Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb

18.4 KB

12. Multiple-Linear-Regression-with-Dummies-Exercise.ipynb

3.1 KB

12. real-estate-price-size-year-view.csv

3.5 KB

13. Making-predictions-with-comments.ipynb

9.6 KB

13. Making-predictions.ipynb

5.9 KB

/34. Advanced Statistical Methods - Linear Regression with sklearn/

01. What is sklearn and How is it Different from Other Packages.mp4

8.9 MB

01. What is sklearn and How is it Different from Other Packages.vtt

3.7 KB

02. How are we Going to Approach this Section.mp4

5.6 MB

02. How are we Going to Approach this Section.vtt

3.1 KB

03. Simple Linear Regression with sklearn.mp4

28.8 MB

03. Simple Linear Regression with sklearn.vtt

7.8 KB

04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4

23.4 MB

04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt

6.9 KB

05. A Note on Normalization.html

0.7 KB

06. Simple Linear Regression with sklearn - Exercise.html

0.1 KB

07. Multiple Linear Regression with sklearn.mp4

8.7 MB

07. Multiple Linear Regression with sklearn.vtt

4.4 KB

08. Calculating the Adjusted R-Squared in sklearn.mp4

17.7 MB

08. Calculating the Adjusted R-Squared in sklearn.vtt

6.8 KB

09. Calculating the Adjusted R-Squared in sklearn - Exercise.html

0.1 KB

10. Feature Selection (F-regression).mp4

21.5 MB

10. Feature Selection (F-regression).vtt

7.1 KB

11. A Note on Calculation of P-values with sklearn.html

0.4 KB

12. Creating a Summary Table with P-values.mp4

6.8 MB

12. Creating a Summary Table with P-values.vtt

3.1 KB

13. Multiple Linear Regression - Exercise.html

0.1 KB

14. Feature Scaling (Standardization).mp4

21.4 MB

14. Feature Scaling (Standardization).vtt

9.0 KB

15. Feature Selection through Standardization of Weights.mp4

25.7 MB

15. Feature Selection through Standardization of Weights.vtt

7.8 KB

16. Predicting with the Standardized Coefficients.mp4

21.4 MB

16. Predicting with the Standardized Coefficients.vtt

5.7 KB

17. Feature Scaling (Standardization) - Exercise.html

0.1 KB

18. Underfitting and Overfitting.mp4

6.1 MB

18. Underfitting and Overfitting.vtt

3.8 KB

19. Train - Test Split Explained.mp4

37.3 MB

19. Train - Test Split Explained.vtt

9.9 KB

/assets/

03. 1.01.Simple-linear-regression.csv

0.9 KB

03. sklearn-Simple-Linear-Regression-with-comments.ipynb

6.2 KB

03. sklearn-Simple-Linear-Regression.ipynb

5.0 KB

04. 1.01.Simple-linear-regression.csv

0.9 KB

04. sklearn-Simple-Linear-Regression-with-comments.ipynb

29.0 KB

04. sklearn-Simple-Linear-Regression.ipynb

26.7 KB

06. real-estate-price-size.csv

1.9 KB

06. Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb

27.2 KB

06. Simple-Linear-Regression-with-sklearn-Exercise.ipynb

4.2 KB

07. 1.02.Multiple-linear-regression.csv

1.1 KB

07. sklearn-Multiple-Linear-Regression-with-comments.ipynb

8.9 KB

07. sklearn-Multiple-Linear-Regression.ipynb

8.0 KB

08. 1.02.Multiple-linear-regression.csv

1.1 KB

08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb

10.7 KB

08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb

9.3 KB

09. 1.02.Multiple-linear-regression.csv

1.1 KB

09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb

10.6 KB

09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb

10.1 KB

10. 1.02.Multiple-linear-regression.csv

1.1 KB

10. sklearn-Feature-Selection-with-F-regression-with-comments.ipynb

13.3 KB

10. sklearn-Feature-Selection-with-F-regression.ipynb

10.7 KB

11. 1.02.Multiple-linear-regression.csv

1.1 KB

11. sklearn-How-to-properly-include-p-values.ipynb

13.0 KB

12. 1.02.Multiple-linear-regression.csv

1.1 KB

12. sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb

17.0 KB

12. sklearn-Multiple-Linear-Regression-Summary-Table.ipynb

14.0 KB

13. real-estate-price-size-year.csv

2.4 KB

13. sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb

15.8 KB

13. sklearn-Multiple-Linear-Regression-Exercise.ipynb

5.8 KB

14. 1.02.Multiple-linear-regression.csv

1.1 KB

14. SKLEAR-1.IPY

13.2 KB

14. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb

12.0 KB

15. 1.02.Multiple-linear-regression.csv

1.1 KB

15. SKLEAR-1.IPY

17.2 KB

15. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb

15.3 KB

16. 1.02.Multiple-linear-regression.csv

1.1 KB

16. sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb

22.6 KB

16. sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb

30.5 KB

17. real-estate-price-size-year.csv

2.4 KB

17. sklearn-Feature-Scaling-Exercise-Solution.ipynb

16.7 KB

17. sklearn-Feature-Scaling-Exercise.ipynb

6.2 KB

19. sklearn-Train-Test-Split-with-comments.ipynb

9.3 KB

19. sklearn-Train-Test-Split.ipynb

7.4 KB

/35. Advanced Statistical Methods - Practical Example Linear Regression/

01. Practical Example Linear Regression (Part 1).mp4

88.9 MB

01. Practical Example Linear Regression (Part 1).vtt

15.2 KB

02. Practical Example Linear Regression (Part 2).mp4

33.4 MB

02. Practical Example Linear Regression (Part 2).vtt

8.5 KB

03. A Note on Multicollinearity.html

0.8 KB

04. Practical Example Linear Regression (Part 3).mp4

17.5 MB

04. Practical Example Linear Regression (Part 3).vtt

4.6 KB

05. Dummies and Variance Inflation Factor - Exercise.html

0.1 KB

06. Practical Example Linear Regression (Part 4).mp4

41.3 MB

06. Practical Example Linear Regression (Part 4).vtt

12.1 KB

07. Dummy Variables - Exercise.html

0.7 KB

08. Practical Example Linear Regression (Part 5).mp4

52.9 MB

08. Practical Example Linear Regression (Part 5).vtt

11.3 KB

09. Linear Regression - Exercise.html

0.5 KB

/assets/

01. 1.04.Real-life-example.csv

225.1 KB

01. sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb

175.5 KB

01. sklearn-Linear-Regression-Practical-Example-Part-1.ipynb

170.9 KB

02. 1.04.Real-life-example.csv

225.1 KB

02. sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb

343.7 KB

02. sklearn-Linear-Regression-Practical-Example-Part-2.ipynb

336.6 KB

04. sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb

359.9 KB

04. sklearn-Linear-Regression-Practical-Example-Part-3.ipynb

351.8 KB

05. 1.04.Real-life-example.csv

225.1 KB

05. sklearn-Dummies-and-VIF-Exercise-Solution.ipynb

379.1 KB

05. sklearn-Dummies-and-VIF-Exercise.ipynb

352.9 KB

06. 1.04.Real-life-example.csv

225.1 KB

06. sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb

417.4 KB

06. sklearn-Linear-Regression-Practical-Example-Part-4.ipynb

406.8 KB

08. 1.04.Real-life-example.csv

225.1 KB

08. sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb

728.1 KB

08. sklearn-Linear-Regression-Practical-Example-Part-5.ipynb

715.1 KB

/36. Advanced Statistical Methods - Logistic Regression/

01. Introduction to Logistic Regression.mp4

6.2 MB

01. Introduction to Logistic Regression.vtt

1.9 KB

02. A Simple Example in Python.mp4

22.9 MB

02. A Simple Example in Python.vtt

6.0 KB

03. Logistic vs Logit Function.mp4

24.9 MB

03. Logistic vs Logit Function.vtt

5.2 KB

04. Building a Logistic Regression.mp4

9.0 MB

04. Building a Logistic Regression.vtt

3.6 KB

05. Building a Logistic Regression - Exercise.html

0.1 KB

06. An Invaluable Coding Tip.mp4

19.7 MB

06. An Invaluable Coding Tip.vtt

3.2 KB

07. Understanding Logistic Regression Tables.mp4

15.3 MB

07. Understanding Logistic Regression Tables.vtt

5.7 KB

08. Understanding Logistic Regression Tables - Exercise.html

0.1 KB

09. What do the Odds Actually Mean.mp4

11.9 MB

09. What do the Odds Actually Mean.vtt

4.5 KB

10. Binary Predictors in a Logistic Regression.mp4

26.1 MB

10. Binary Predictors in a Logistic Regression.vtt

5.4 KB

11. Binary Predictors in a Logistic Regression - Exercise.html

0.1 KB

12. Calculating the Accuracy of the Model.mp4

21.2 MB

12. Calculating the Accuracy of the Model.vtt

4.4 KB

13. Calculating the Accuracy of the Model.html

0.1 KB

14. Underfitting and Overfitting.mp4

7.8 MB

14. Underfitting and Overfitting.vtt

5.3 KB

15. Testing the Model.mp4

22.6 MB

15. Testing the Model.vtt

6.7 KB

16. Testing the Model - Exercise.html

0.1 KB

/assets/

01. Course-Notes-Logistic-Regression.pdf

343.2 KB

02. 2.01.Admittance.csv

1.6 KB

02. Admittance-with-comments.ipynb

5.4 KB

02. Admittance.ipynb

3.6 KB

02. Course-Notes-Logistic-Regression.pdf

343.2 KB

04. Admittance-regression-summary-error.ipynb

2.5 KB

04. Admittance-regression-tables-fixed-error.ipynb

4.2 KB

04. Admittance-regression.ipynb

2.1 KB

05. Building-a-Logistic-Regression-Exercise.ipynb

3.0 KB

05. Building-a-Logistic-Regression-Solution.ipynb

4.6 KB

05. Example-bank-data.csv

6.4 KB

08. Bank-data.csv

20.0 KB

08. Understanding-Logistic-Regression-Tables-Exercise.ipynb

3.2 KB

08. Understanding-Logistic-Regression-Tables-Solution.ipynb

4.9 KB

10. 2.02.Binary-predictors.csv

2.6 KB

10. Binary-predictors.ipynb

2.5 KB

11. Bank-data.csv

20.0 KB

11. Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb

2.6 KB

11. Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb

4.6 KB

12. Accuracy-with-comments.ipynb

12.0 KB

12. Accuracy.ipynb

3.7 KB

13. Bank-data.csv

20.0 KB

13. Calculating-the-Accuracy-of-the-Model-Exercise.ipynb

5.5 KB

13. Calculating-the-Accuracy-of-the-Model-Solution.ipynb

83.2 KB

15. 2.03.Test-dataset.csv

0.3 KB

15. Testing-the-model-with-comments.ipynb

7.7 KB

15. Testing-the-model.ipynb

5.9 KB

16. Bank-data-testing.csv

8.5 KB

16. Bank-data.csv

20.0 KB

16. Testing-the-Model-Exercise.ipynb

7.0 KB

16. Testing-the-Model-Solution.ipynb

113.8 KB

/37. Advanced Statistical Methods - Cluster Analysis/

01. Introduction to Cluster Analysis.mp4

15.2 MB

01. Introduction to Cluster Analysis.vtt

5.1 KB

02. Some Examples of Clusters.mp4

37.6 MB

02. Some Examples of Clusters.vtt

6.4 KB

03. Difference between Classification and Clustering.mp4

10.1 MB

03. Difference between Classification and Clustering.vtt

3.7 KB

04. Math Prerequisites.mp4

5.5 MB

04. Math Prerequisites.vtt

4.5 KB

/assets/

01. Course-Notes-Cluster-Analysis.pdf

213.7 KB

02. Course-Notes-Cluster-Analysis.pdf

213.7 KB

/38. Advanced Statistical Methods - K-Means Clustering/

01. K-Means Clustering.mp4

11.3 MB

01. K-Means Clustering.vtt

6.8 KB

02. A Simple Example of Clustering.mp4

35.8 MB

02. A Simple Example of Clustering.vtt

10.0 KB

03. A Simple Example of Clustering - Exercise.html

0.1 KB

04. Clustering Categorical Data.mp4

10.9 MB

04. Clustering Categorical Data.vtt

3.4 KB

05. Clustering Categorical Data - Exercise.html

0.1 KB

06. How to Choose the Number of Clusters.mp4

28.2 MB

06. How to Choose the Number of Clusters.vtt

7.7 KB

07. How to Choose the Number of Clusters - Exercise.html

0.1 KB

08. Pros and Cons of K-Means Clustering.mp4

11.7 MB

08. Pros and Cons of K-Means Clustering.vtt

4.7 KB

09. To Standardize or not to Standardize.mp4

11.4 MB

09. To Standardize or not to Standardize.vtt

6.4 KB

10. Relationship between Clustering and Regression.mp4

3.7 MB

10. Relationship between Clustering and Regression.vtt

2.3 KB

11. Market Segmentation with Cluster Analysis (Part 1).mp4

29.4 MB

11. Market Segmentation with Cluster Analysis (Part 1).vtt

7.7 KB

12. Market Segmentation with Cluster Analysis (Part 2).mp4

35.7 MB

12. Market Segmentation with Cluster Analysis (Part 2).vtt

9.4 KB

13. How is Clustering Useful.mp4

39.3 MB

13. How is Clustering Useful.vtt

6.9 KB

14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html

0.1 KB

15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html

0.1 KB

/assets/

02. 3.01.Country-clusters.csv

0.2 KB

02. Country-clusters-with-comments.ipynb

5.9 KB

02. Country-clusters.ipynb

3.4 KB

03. A-Simple-Example-of-Clustering-Exercise.ipynb

3.7 KB

03. A-Simple-Example-of-Clustering-Solution.ipynb

4.8 KB

03. Countries-exercise.csv

8.5 KB

04. Categorical-data-with-comments.ipynb

5.8 KB

04. Categorical-data.ipynb

3.4 KB

05. Categorical.csv

10.6 KB

05. Clustering-Categorical-Data-Exercise.ipynb

3.9 KB

05. Clustering-Categorical-Data-Solution.ipynb

5.0 KB

06. Selecting-the-number-of-clusters-with-comments.ipynb

7.7 KB

06. Selecting-the-number-of-clusters.ipynb

4.6 KB

07. Countries-exercise.csv

8.5 KB

07. How-to-Choose-the-Number-of-Clusters-Exercise.ipynb

5.7 KB

07. How-to-Choose-the-Number-of-Clusters-Solution.ipynb

8.7 KB

11. 3.12.Example.csv

0.3 KB

11. Market-segmentation-example-with-comments.ipynb

6.0 KB

11. Market-segmentation-example.ipynb

3.9 KB

12. Market-segmentation-example-Part2-with-comments.ipynb

7.0 KB

12. Market-segmentation-example-Part2.ipynb

4.8 KB

14. iris-dataset.csv

2.5 KB

14. Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb

4.6 KB

14. Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb

7.5 KB

15. iris-dataset.csv

2.5 KB

15. iris-with-answers.csv

3.7 KB

15. Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb

11.0 KB

15. Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb

15.7 KB

/39. Advanced Statistical Methods - Other Types of Clustering/

01. Types of Clustering.mp4

9.4 MB

01. Types of Clustering.vtt

5.2 KB

02. Dendrogram.mp4

19.2 MB

02. Dendrogram.vtt

7.8 KB

03. Heatmaps.mp4

19.4 MB

03. Heatmaps.vtt

6.3 KB

/assets/

03. Country-clusters-standardized.csv

0.2 KB

03. Heatmaps-with-comments.ipynb

18.1 KB

03. Heatmaps.ipynb

1.9 KB

/40. ChatGPT for Data Science/

01. Traditional data science methods and the role of ChatGPT.mp4

27.4 MB

01. Traditional data science methods and the role of ChatGPT.vtt

7.4 KB

02. How to install ChatGPT.mp4

5.5 MB

02. How to install ChatGPT.vtt

2.1 KB

03. How ChatGPT can boost your productivity.mp4

5.6 MB

03. How ChatGPT can boost your productivity.vtt

2.5 KB

04. Data Preprocessing with ChatGPT.mp4

30.1 MB

04. Data Preprocessing with ChatGPT.vtt

6.6 KB

05. First attempt at machine learning with ChatGPT.mp4

38.5 MB

05. First attempt at machine learning with ChatGPT.vtt

6.5 KB

06. Analyzing a client database with ChatGPT in Python.mp4

22.7 MB

06. Analyzing a client database with ChatGPT in Python.vtt

5.3 KB

07. Analyzing a client database with ChatGPT in Python – analyzing top products.mp4

15.9 MB

07. Analyzing a client database with ChatGPT in Python – analyzing top products.vtt

5.3 KB

08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.mp4

28.5 MB

08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.vtt

6.0 KB

09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.mp4

22.6 MB

09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.vtt

7.6 KB

10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.mp4

35.3 MB

10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.vtt

7.7 KB

11. Assignment 1.html

1.7 KB

12. Hypothesis testing with ChatGPT.mp4

15.1 MB

12. Hypothesis testing with ChatGPT.vtt

5.8 KB

13. Marvels comic book database Intro to Regular Expressions (RegEx).mp4

15.7 MB

13. Marvels comic book database Intro to Regular Expressions (RegEx).vtt

2.8 KB

14. Decoding comic book data Python Regular Expressions and ChatGPT.mp4

34.7 MB

14. Decoding comic book data Python Regular Expressions and ChatGPT.vtt

6.6 KB

15. Assignment 2.html

1.6 KB

16. Algorithm recommendation Movie Database Analysis with ChatGPT.mp4

18.1 MB

16. Algorithm recommendation Movie Database Analysis with ChatGPT.vtt

4.5 KB

17. Algorithm recommendation recommendation engine for movies with ChatGPT.mp4

18.7 MB

17. Algorithm recommendation recommendation engine for movies with ChatGPT.vtt

6.5 KB

18. Ethical principles in data and AI utilization.mp4

15.4 MB

18. Ethical principles in data and AI utilization.vtt

4.5 KB

19. Using ChatGPT for ethical considerations.mp4

35.2 MB

19. Using ChatGPT for ethical considerations.vtt

7.7 KB

/assets/

04. Data-Preprocessing-Medical-Data.ipynb

7.7 KB

04. patients.csv

3.0 KB

05. diagnosis-mapping.csv

0.1 KB

05. Medical-Data-ML-Attempt.ipynb

4.5 KB

05. patients-preprocessed.csv

3.4 KB

06. customers.csv

1.6 KB

06. orders.csv

38.6 KB

06. products.csv

1.8 KB

06. ratings.csv

3.5 KB

08. Furniture-store-data-analysis.ipynb

53.6 KB

10. Properties-analysis.ipynb

293.4 KB

10. properties.csv

2.7 KB

12. Students-Hypothesis-Testing.ipynb

5.7 KB

12. students.csv

2.1 KB

14. Marvel-Comics-Reg-Ex.ipynb

30.2 KB

16. ratings-small.csv

2.4 MB

17. Movies-Data-Base-Recommendation-Engine.ipynb

20.9 KB

19. friendships.csv

6.1 KB

19. interactions.csv

75.0 KB

19. posts.csv

31.5 KB

19. users.csv

3.6 KB

/.../13. Marvel-Comics/

Marvel_Comics.csv

13.6 MB

/.../16. movies-metadata/

movies_metadata.csv

34.4 MB

/41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/

01. Intro to the Case Study.mp4

10.9 MB

01. Intro to the Case Study.vtt

3.8 KB

02. The Naive Bayes Algorithm.mp4

44.1 MB

02. The Naive Bayes Algorithm.vtt

6.2 KB

03. Tokenization and Vectorization.mp4

16.6 MB

03. Tokenization and Vectorization.vtt

8.1 KB

04. Imbalanced Data Sets.mp4

6.9 MB

04. Imbalanced Data Sets.vtt

3.3 KB

05. Overcome Imbalanced Data in Machine Learning.mp4

15.3 MB

05. Overcome Imbalanced Data in Machine Learning.vtt

5.2 KB

06. Loading the Dataset and Preprocessing.mp4

15.5 MB

06. Loading the Dataset and Preprocessing.vtt

3.8 KB

07. Optimizing User Reviews Data Preprocessing & EDA.mp4

19.6 MB

07. Optimizing User Reviews Data Preprocessing & EDA.vtt

6.1 KB

08. Reg Ex for Analyzing Text Review Data.mp4

17.0 MB

08. Reg Ex for Analyzing Text Review Data.vtt

5.2 KB

09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.mp4

14.5 MB

09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.vtt

5.5 KB

10. Machine Learning with Naïve Bayes (First Attempt).mp4

29.5 MB

10. Machine Learning with Naïve Bayes (First Attempt).vtt

8.6 KB

11. Machine Learning with Naïve Bayes – converting the problem to a binary one.mp4

19.8 MB

11. Machine Learning with Naïve Bayes – converting the problem to a binary one.vtt

6.9 KB

12. Testing the Model on New Data.mp4

21.8 MB

12. Testing the Model on New Data.vtt

7.1 KB

/assets/

12. 365-User-Reviews-Naive-Bayes-Sentiment-Analysis.ipynb

1.8 MB

12. user-courses-review-test-set.csv

20.1 KB

/42. Part 6 Mathematics/

01. What is a Matrix.mp4

12.5 MB

01. What is a Matrix.vtt

4.7 KB

02. Scalars and Vectors.mp4

9.0 MB

02. Scalars and Vectors.vtt

4.1 KB

03. Linear Algebra and Geometry.mp4

14.4 MB

03. Linear Algebra and Geometry.vtt

4.2 KB

04. Arrays in Python - A Convenient Way To Represent Matrices.mp4

19.9 MB

04. Arrays in Python - A Convenient Way To Represent Matrices.vtt

6.4 KB

05. What is a Tensor.mp4

16.3 MB

05. What is a Tensor.vtt

3.9 KB

06. Addition and Subtraction of Matrices.mp4

23.2 MB

06. Addition and Subtraction of Matrices.vtt

4.3 KB

07. Errors when Adding Matrices.mp4

6.1 MB

07. Errors when Adding Matrices.vtt

2.8 KB

08. Transpose of a Matrix.mp4

14.9 MB

08. Transpose of a Matrix.vtt

5.7 KB

09. Dot Product.mp4

13.5 MB

09. Dot Product.vtt

4.4 KB

10. Dot Product of Matrices.mp4

36.0 MB

10. Dot Product of Matrices.vtt

9.3 KB

11. Why is Linear Algebra Useful.mp4

92.8 MB

11. Why is Linear Algebra Useful.vtt

11.8 KB

/assets/

04. Scalars-Vectors-and-Matrices.ipynb

4.7 KB

05. Tensors.ipynb

2.1 KB

06. Adding-and-subtracting-matrices.ipynb

3.3 KB

07. Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb

3.2 KB

08. Tranpose-of-a-matrix.ipynb

3.0 KB

09. Dot-product.ipynb

2.2 KB

10. Dot-product-Part-2.ipynb

3.7 KB

/43. Part 7 Deep Learning/

01. What to Expect from this Part.mp4

12.3 MB

01. What to Expect from this Part.vtt

4.9 KB

/44. Deep Learning - Introduction to Neural Networks/

01. Introduction to Neural Networks.mp4

11.0 MB

01. Introduction to Neural Networks.vtt

6.4 KB

02. Training the Model.mp4

8.1 MB

02. Training the Model.vtt

4.9 KB

03. Types of Machine Learning.mp4

13.7 MB

03. Types of Machine Learning.vtt

5.6 KB

04. The Linear Model (Linear Algebraic Version).mp4

8.4 MB

04. The Linear Model (Linear Algebraic Version).vtt

3.8 KB

05. The Linear Model with Multiple Inputs.mp4

8.3 MB

05. The Linear Model with Multiple Inputs.vtt

2.9 KB

06. The Linear model with Multiple Inputs and Multiple Outputs.mp4

17.4 MB

06. The Linear model with Multiple Inputs and Multiple Outputs.vtt

5.0 KB

07. Graphical Representation of Simple Neural Networks.mp4

8.2 MB

07. Graphical Representation of Simple Neural Networks.vtt

2.8 KB

08. What is the Objective Function.mp4

6.5 MB

08. What is the Objective Function.vtt

2.3 KB

09. Common Objective Functions L2-norm Loss.mp4

5.7 MB

09. Common Objective Functions L2-norm Loss.vtt

3.0 KB

10. Common Objective Functions Cross-Entropy Loss.mp4

10.3 MB

10. Common Objective Functions Cross-Entropy Loss.vtt

5.5 KB

11. Optimization Algorithm 1-Parameter Gradient Descent.mp4

24.7 MB

11. Optimization Algorithm 1-Parameter Gradient Descent.vtt

9.0 KB

12. Optimization Algorithm n-Parameter Gradient Descent.mp4

17.7 MB

12. Optimization Algorithm n-Parameter Gradient Descent.vtt

8.0 KB

/assets/

01. Course-Notes-Section-2.pdf

592.0 KB

02. Course-Notes-Section-2.pdf

592.0 KB

11. GD-function-example.xlsx

43.4 KB

/45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/

01. Basic NN Example (Part 1).mp4

9.8 MB

01. Basic NN Example (Part 1).vtt

4.6 KB

02. Basic NN Example (Part 2).mp4

16.0 MB

02. Basic NN Example (Part 2).vtt

6.8 KB

03. Basic NN Example (Part 3).mp4

16.4 MB

03. Basic NN Example (Part 3).vtt

4.5 KB

04. Basic NN Example (Part 4).mp4

41.9 MB

04. Basic NN Example (Part 4).vtt

11.2 KB

05. Basic NN Example Exercises.html

1.7 KB

/assets/

01. Minimal-example-Part-1.ipynb

1.2 KB

01. Shortcuts-for-Jupyter.pdf

634.0 KB

02. Minimal-example-Part-2.ipynb

3.7 KB

03. Minimal-example-Part-3.ipynb

7.0 KB

04. Minimal-example-Part-4-Complete.ipynb

11.7 KB

05. Minimal-example-All-Exercises.ipynb

13.2 KB

05. Minimal-example-Exercise-1-Solution.ipynb

70.7 KB

05. Minimal-example-Exercise-2-Solution.ipynb

62.9 KB

05. Minimal-example-Exercise-3.a.Solution.ipynb

69.5 KB

05. Minimal-example-Exercise-3.b.Solution.ipynb

69.3 KB

05. Minimal-example-Exercise-3.c.Solution.ipynb

71.8 KB

05. Minimal-example-Exercise-3.d.Solution.ipynb

86.2 KB

05. Minimal-example-Exercise-4-Solution.ipynb

68.1 KB

05. Minimal-example-Exercise-5-Solution.ipynb

70.5 KB

05. Minimal-example-Exercise-6-Solution.ipynb

63.2 KB

05. Minimal-example-Exercise-6.ipynb

63.2 KB

/46. Deep Learning - TensorFlow 2.0 Introduction/

01. How to Install TensorFlow 2.0.mp4

28.7 MB

01. How to Install TensorFlow 2.0.vtt

6.7 KB

02. TensorFlow Outline and Comparison with Other Libraries.mp4

16.0 MB

02. TensorFlow Outline and Comparison with Other Libraries.vtt

5.6 KB

03. TensorFlow 1 vs TensorFlow 2.mp4

16.0 MB

03. TensorFlow 1 vs TensorFlow 2.vtt

4.1 KB

04. A Note on TensorFlow 2 Syntax.mp4

4.9 MB

04. A Note on TensorFlow 2 Syntax.vtt

1.5 KB

05. Types of File Formats Supporting TensorFlow.mp4

9.3 MB

05. Types of File Formats Supporting TensorFlow.vtt

3.5 KB

06. Outlining the Model with TensorFlow 2.mp4

28.3 MB

06. Outlining the Model with TensorFlow 2.vtt

8.6 KB

07. Interpreting the Result and Extracting the Weights and Bias.mp4

27.2 MB

07. Interpreting the Result and Extracting the Weights and Bias.vtt

6.9 KB

08. Customizing a TensorFlow 2 Model.mp4

17.6 MB

08. Customizing a TensorFlow 2 Model.vtt

4.4 KB

09. Basic NN with TensorFlow Exercises.html

1.3 KB

/assets/

01. Shortcuts-for-Jupyter.pdf

634.0 KB

05. TensorFlow-Minimal-example-Part1.ipynb

1.7 KB

06. TensorFlow-Minimal-example-Part2.ipynb

9.3 KB

07. TensorFlow-Minimal-example-Part3.ipynb

78.4 KB

08. TensorFlow-Minimal-example-complete-with-comments.ipynb

84.3 KB

08. TensorFlow-Minimal-example-complete.ipynb

78.7 KB

09. TensorFlow-Minimal-example-All-exercises.ipynb

85.6 KB

09. TensorFlow-Minimal-example-Exercise-1-Solution.ipynb

28.6 KB

09. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb

85.7 KB

09. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb

79.4 KB

09. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb

86.5 KB

/47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/

01. What is a Layer.mp4

5.4 MB

01. What is a Layer.vtt

2.7 KB

02. What is a Deep Net.mp4

9.6 MB

02. What is a Deep Net.vtt

3.3 KB

03. Digging into a Deep Net.mp4

24.8 MB

03. Digging into a Deep Net.vtt

7.1 KB

04. Non-Linearities and their Purpose.mp4

23.6 MB

04. Non-Linearities and their Purpose.vtt

4.3 KB

05. Activation Functions.mp4

9.3 MB

05. Activation Functions.vtt

5.4 KB

06. Activation Functions Softmax Activation.mp4

9.2 MB

06. Activation Functions Softmax Activation.vtt

4.6 KB

07. Backpropagation.mp4

21.3 MB

07. Backpropagation.vtt

4.7 KB

08. Backpropagation Picture.mp4

8.5 MB

08. Backpropagation Picture.vtt

3.9 KB

09. Backpropagation - A Peek into the Mathematics of Optimization.html

0.5 KB

/assets/

01. Course-Notes-Section-6.pdf

958.9 KB

02. Course-Notes-Section-6.pdf

958.9 KB

09. Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf

186.8 KB

/48. Deep Learning - Overfitting/

01. What is Overfitting.mp4

11.3 MB

01. What is Overfitting.vtt

6.0 KB

02. Underfitting and Overfitting for Classification.mp4

14.7 MB

02. Underfitting and Overfitting for Classification.vtt

2.9 KB

03. What is Validation.mp4

8.8 MB

03. What is Validation.vtt

5.1 KB

04. Training, Validation, and Test Datasets.mp4

9.9 MB

04. Training, Validation, and Test Datasets.vtt

3.5 KB

05. N-Fold Cross Validation.mp4

6.5 MB

05. N-Fold Cross Validation.vtt

4.5 KB

06. Early Stopping or When to Stop Training.mp4

10.8 MB

06. Early Stopping or When to Stop Training.vtt

7.1 KB

/49. Deep Learning - Initialization/

01. What is Initialization.mp4

9.3 MB

01. What is Initialization.vtt

3.8 KB

02. Types of Simple Initializations.mp4

6.0 MB

02. Types of Simple Initializations.vtt

3.9 KB

03. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4

5.7 MB

03. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt

3.9 KB

/50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/

01. Stochastic Gradient Descent.mp4

8.2 MB

01. Stochastic Gradient Descent.vtt

4.9 KB

02. Problems with Gradient Descent.mp4

3.8 MB

02. Problems with Gradient Descent.vtt

3.1 KB

03. Momentum.mp4

5.4 MB

03. Momentum.vtt

3.7 KB

04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4

18.4 MB

04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt

6.5 KB

05. Learning Rate Schedules Visualized.mp4

3.3 MB

05. Learning Rate Schedules Visualized.vtt

2.3 KB

06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4

8.9 MB

06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt

5.7 KB

07. Adam (Adaptive Moment Estimation).mp4

7.5 MB

07. Adam (Adaptive Moment Estimation).vtt

3.5 KB

/51. Deep Learning - Preprocessing/

01. Preprocessing Introduction.mp4

9.7 MB

01. Preprocessing Introduction.vtt

4.2 KB

02. Types of Basic Preprocessing.mp4

3.4 MB

02. Types of Basic Preprocessing.vtt

1.9 KB

03. Standardization.mp4

12.7 MB

03. Standardization.vtt

6.3 KB

04. Preprocessing Categorical Data.mp4

5.7 MB

04. Preprocessing Categorical Data.vtt

2.9 KB

05. Binary and One-Hot Encoding.mp4

9.0 MB

05. Binary and One-Hot Encoding.vtt

5.4 KB

/52. Deep Learning - Classifying on the MNIST Dataset/

01. MNIST The Dataset.mp4

4.8 MB

01. MNIST The Dataset.vtt

3.7 KB

02. MNIST How to Tackle the MNIST.mp4

8.3 MB

02. MNIST How to Tackle the MNIST.vtt

3.7 KB

03. MNIST Importing the Relevant Packages and Loading the Data.mp4

12.8 MB

03. MNIST Importing the Relevant Packages and Loading the Data.vtt

3.1 KB

04. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4

24.0 MB

04. MNIST Preprocess the Data - Create a Validation Set and Scale It.vtt

6.7 KB

05. MNIST Preprocess the Data - Scale the Test Data - Exercise.html

0.1 KB

06. MNIST Preprocess the Data - Shuffle and Batch.mp4

34.3 MB

06. MNIST Preprocess the Data - Shuffle and Batch.vtt

9.8 KB

07. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html

0.1 KB

08. MNIST Outline the Model.mp4

23.1 MB

08. MNIST Outline the Model.vtt

7.3 KB

09. MNIST Select the Loss and the Optimizer.mp4

11.2 MB

09. MNIST Select the Loss and the Optimizer.vtt

3.1 KB

10. MNIST Learning.mp4

32.5 MB

10. MNIST Learning.vtt

8.1 KB

11. MNIST - Exercises.html

2.0 KB

12. MNIST Testing the Model.mp4

23.7 MB

12. MNIST Testing the Model.vtt

6.1 KB

/assets/

03. TensorFlow-MNIST-Part1-with-comments.ipynb

4.1 KB

05. TensorFlow-MNIST-Part2-with-comments.ipynb

6.5 KB

07. TensorFlow-MNIST-Part3-with-comments.ipynb

8.8 KB

08. TensorFlow-MNIST-Part4-with-comments.ipynb

10.7 KB

09. TensorFlow-MNIST-Part5-with-comments.ipynb

11.2 KB

10. TensorFlow-MNIST-Part6-with-comments.ipynb

12.8 KB

11. 1.TensorFlow-MNIST-Width-Solution.ipynb

15.2 KB

11. 2.TensorFlow-MNIST-Depth-Solution.ipynb

15.7 KB

11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb

15.7 KB

11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb

15.5 KB

11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb

15.1 KB

11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb

15.5 KB

11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb

15.5 KB

11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb

21.1 KB

11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb

16.2 KB

11. TensorFlow-MNIST-All-Exercises.ipynb

17.1 KB

11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb

15.4 KB

12. TensorFlow-MNIST-complete-with-comments.ipynb

14.9 KB

12. TensorFlow-MNIST-complete.ipynb

6.9 KB

/53. Deep Learning - Business Case Example/

01. Business Case Exploring the Dataset and Identifying Predictors.mp4

53.8 MB

01. Business Case Exploring the Dataset and Identifying Predictors.vtt

11.3 KB

02. Business Case Outlining the Solution.mp4

3.2 MB

02. Business Case Outlining the Solution.vtt

2.0 KB

03. Business Case Balancing the Dataset.mp4

23.4 MB

03. Business Case Balancing the Dataset.vtt

4.4 KB

04. Business Case Preprocessing the Data.mp4

77.4 MB

04. Business Case Preprocessing the Data.vtt

13.9 KB

05. Business Case Preprocessing the Data - Exercise.html

0.4 KB

06. Business Case Load the Preprocessed Data.mp4

14.5 MB

06. Business Case Load the Preprocessed Data.vtt

4.8 KB

07. Business Case Load the Preprocessed Data - Exercise.html

0.1 KB

08. Business Case Learning and Interpreting the Result.mp4

30.8 MB

08. Business Case Learning and Interpreting the Result.vtt

6.5 KB

09. Business Case Setting an Early Stopping Mechanism.mp4

45.9 MB

09. Business Case Setting an Early Stopping Mechanism.vtt

8.3 KB

10. Setting an Early Stopping Mechanism - Exercise.html

0.2 KB

11. Business Case Testing the Model.mp4

8.6 MB

11. Business Case Testing the Model.vtt

2.2 KB

12. Business Case Final Exercise.html

0.4 KB

/assets/

01. Audiobooks-data.csv

727.8 KB

04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb

11.5 KB

04. TensorFlow-Audiobooks-Preprocessing.ipynb

5.7 KB

05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb

10.3 KB

05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb

8.8 KB

07. TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb

4.7 KB

08. TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb

20.2 KB

09. TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb

10.3 KB

11. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb

12.2 KB

12. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb

12.2 KB

/54. Deep Learning - Conclusion/

01. Summary on What You've Learned.mp4

10.3 MB

01. Summary on What You've Learned.vtt

5.6 KB

02. What's Further out there in terms of Machine Learning.mp4

5.0 MB

02. What's Further out there in terms of Machine Learning.vtt

2.8 KB

03. DeepMind and Deep Learning.html

1.1 KB

04. An overview of CNNs.mp4

14.0 MB

04. An overview of CNNs.vtt

6.5 KB

05. An Overview of RNNs.mp4

7.3 MB

05. An Overview of RNNs.vtt

4.1 KB

06. An Overview of non-NN Approaches.mp4

16.9 MB

06. An Overview of non-NN Approaches.vtt

5.9 KB

/55. Appendix Deep Learning - TensorFlow 1 Introduction/

01. READ ME!!!!.html

0.6 KB

02. How to Install TensorFlow 1.mp4

5.2 MB

02. How to Install TensorFlow 1.vtt

3.5 KB

03. A Note on Installing Packages in Anaconda.html

2.3 KB

04. TensorFlow Intro.mp4

17.7 MB

04. TensorFlow Intro.vtt

5.5 KB

05. Actual Introduction to TensorFlow.mp4

9.5 MB

05. Actual Introduction to TensorFlow.vtt

2.4 KB

06. Types of File Formats, supporting Tensors.mp4

9.3 MB

06. Types of File Formats, supporting Tensors.vtt

3.5 KB

07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4

18.5 MB

07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt

8.2 KB

08. Basic NN Example with TF Loss Function and Gradient Descent.mp4

14.3 MB

08. Basic NN Example with TF Loss Function and Gradient Descent.vtt

5.0 KB

09. Basic NN Example with TF Model Output.mp4

17.9 MB

09. Basic NN Example with TF Model Output.vtt

8.0 KB

10. Basic NN Example with TF Exercises.html

1.6 KB

/assets/

05. Shortcuts-for-Jupyter.pdf

634.0 KB

06. 5.3.TensorFlow-Minimal-example-Part-1.ipynb

3.4 KB

07. 5.4.TensorFlow-Minimal-example-Part-2.ipynb

6.3 KB

08. 5.5.TensorFlow-Minimal-example-Part-3.ipynb

8.9 KB

09. 5.6.TensorFlow-Minimal-example-complete.ipynb

12.4 KB

10. TensorFlow-Minimal-Example-All-Exercises.ipynb

14.3 KB

10. TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb

24.2 KB

10. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb

26.2 KB

10. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb

26.1 KB

10. TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb

51.2 KB

10. TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb

22.3 KB

10. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb

27.4 KB

10. TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb

27.6 KB

/56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/

01. MNIST What is the MNIST Dataset.mp4

5.0 MB

01. MNIST What is the MNIST Dataset.vtt

3.7 KB

02. MNIST How to Tackle the MNIST.mp4

8.4 MB

02. MNIST How to Tackle the MNIST.vtt

3.9 KB

03. MNIST Relevant Packages.mp4

11.8 MB

03. MNIST Relevant Packages.vtt

2.2 KB

04. MNIST Model Outline.mp4

36.4 MB

04. MNIST Model Outline.vtt

9.4 KB

05. MNIST Loss and Optimization Algorithm.mp4

16.6 MB

05. MNIST Loss and Optimization Algorithm.vtt

3.7 KB

06. Calculating the Accuracy of the Model.mp4

25.6 MB

06. Calculating the Accuracy of the Model.vtt

5.4 KB

07. MNIST Batching and Early Stopping.mp4

9.9 MB

07. MNIST Batching and Early Stopping.vtt

2.9 KB

08. MNIST Learning.mp4

33.4 MB

08. MNIST Learning.vtt

10.7 KB

09. MNIST Results and Testing.mp4

40.0 MB

09. MNIST Results and Testing.vtt

8.4 KB

10. MNIST Exercises.html

2.2 KB

11. MNIST Solutions.html

2.3 KB

/assets/

03. 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb

4.0 KB

04. 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb

6.2 KB

05. 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb

7.5 KB

06. 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb

8.1 KB

07. 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb

8.7 KB

08. 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb

11.8 KB

09. 12.9.TensorFlow-MNIST-with-comments.ipynb

13.3 KB

10. TensorFlow-MNIST-Exercises-All.ipynb

15.8 KB

11. 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb

14.3 KB

11. 1.TensorFlow-MNIST-Width-Solution.ipynb

14.4 KB

11. 2.TensorFlow-MNIST-Depth-Solution.ipynb

15.2 KB

11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb

17.2 KB

11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb

14.7 KB

11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb

14.3 KB

11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb

14.6 KB

11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb

14.5 KB

11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb

14.4 KB

11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb

15.6 KB

11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb

18.1 KB

/57. Appendix Deep Learning - TensorFlow 1 Business Case/

01. Business Case Getting Acquainted with the Dataset.mp4

63.2 MB

01. Business Case Getting Acquainted with the Dataset.vtt

11.2 KB

02. Business Case Outlining the Solution.mp4

4.4 MB

02. Business Case Outlining the Solution.vtt

2.7 KB

03. The Importance of Working with a Balanced Dataset.mp4

28.6 MB

03. The Importance of Working with a Balanced Dataset.vtt

4.5 KB

04. Business Case Preprocessing.mp4

78.0 MB

04. Business Case Preprocessing.vtt

13.9 KB

05. Business Case Preprocessing Exercise.html

0.4 KB

06. Creating a Data Provider.mp4

59.0 MB

06. Creating a Data Provider.vtt

8.5 KB

07. Business Case Model Outline.mp4

44.6 MB

07. Business Case Model Outline.vtt

7.3 KB

08. Business Case Optimization.mp4

28.2 MB

08. Business Case Optimization.vtt

7.1 KB

09. Business Case Interpretation.mp4

19.5 MB

09. Business Case Interpretation.vtt

3.2 KB

10. Business Case Testing the Model.mp4

4.6 MB

10. Business Case Testing the Model.vtt

2.8 KB

11. Business Case A Comment on the Homework.mp4

21.6 MB

11. Business Case A Comment on the Homework.vtt

5.5 KB

12. Business Case Final Exercise.html

0.4 KB

/assets/

01. Audiobooks-data.csv

727.8 KB

03. Audiobooks-data.csv

727.8 KB

04. Audiobooks-data.csv

727.8 KB

04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb

11.5 KB

04. TensorFlow-Audiobooks-Preprocessing.ipynb

5.7 KB

05. Audiobooks-data.csv

727.8 KB

05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb

10.3 KB

05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb

8.8 KB

07. TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb

10.6 KB

07. TensorFlow-Audiobooks-Outlining-the-model.ipynb

9.6 KB

08. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb

13.0 KB

08. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb

10.9 KB

09. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb

13.0 KB

09. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb

10.9 KB

11. Audiobooks-data.csv

727.8 KB

11. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb

14.7 KB

11. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb

11.5 KB

12. Audiobooks-data.csv

727.8 KB

12. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb

14.7 KB

12. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb

11.5 KB

/58. Software Integration/

01. What are Data, Servers, Clients, Requests, and Responses.mp4

20.5 MB

01. What are Data, Servers, Clients, Requests, and Responses.vtt

6.4 KB

02. What are Data Connectivity, APIs, and Endpoints.mp4

63.1 MB

02. What are Data Connectivity, APIs, and Endpoints.vtt

9.4 KB

03. Taking a Closer Look at APIs.mp4

25.7 MB

03. Taking a Closer Look at APIs.vtt

11.2 KB

04. Communication between Software Products through Text Files.mp4

18.4 MB

04. Communication between Software Products through Text Files.vtt

6.0 KB

05. Software Integration - Explained.mp4

16.8 MB

05. Software Integration - Explained.vtt

7.2 KB

/59. Case Study - What's Next in the Course/

01. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4

20.6 MB

01. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt

5.7 KB

02. The Business Task.mp4

11.8 MB

02. The Business Task.vtt

4.2 KB

03. Introducing the Data Set.mp4

25.4 MB

03. Introducing the Data Set.vtt

4.4 KB

/60. Case Study - Preprocessing the 'Absenteeism_data'/

01. What to Expect from the Following Sections.html

2.5 KB

02. Importing the Absenteeism Data in Python.mp4

20.5 MB

02. Importing the Absenteeism Data in Python.vtt

4.1 KB

03. Checking the Content of the Data Set.mp4

56.6 MB

03. Checking the Content of the Data Set.vtt

7.3 KB

04. Introduction to Terms with Multiple Meanings.mp4

18.9 MB

04. Introduction to Terms with Multiple Meanings.vtt

4.4 KB

05. What's Regression Analysis - a Quick Refresher.html

2.9 KB

06. Using a Statistical Approach towards the Solution to the Exercise.mp4

10.4 MB

06. Using a Statistical Approach towards the Solution to the Exercise.vtt

3.1 KB

07. Dropping a Column from a DataFrame in Python.mp4

43.2 MB

07. Dropping a Column from a DataFrame in Python.vtt

8.4 KB

08. EXERCISE - Dropping a Column from a DataFrame in Python.html

0.9 KB

09. SOLUTION - Dropping a Column from a DataFrame in Python.html

0.1 KB

10. Analyzing the Reasons for Absence.mp4

29.0 MB

10. Analyzing the Reasons for Absence.vtt

6.2 KB

11. Obtaining Dummies from a Single Feature.mp4

73.1 MB

11. Obtaining Dummies from a Single Feature.vtt

10.8 KB

12. EXERCISE - Obtaining Dummies from a Single Feature.html

0.1 KB

13. SOLUTION - Obtaining Dummies from a Single Feature.html

0.1 KB

14. Dropping a Dummy Variable from the Data Set.html

2.4 KB

15. More on Dummy Variables A Statistical Perspective.mp4

6.1 MB

15. More on Dummy Variables A Statistical Perspective.vtt

1.7 KB

16. Classifying the Various Reasons for Absence.mp4

53.8 MB

16. Classifying the Various Reasons for Absence.vtt

10.8 KB

17. Using .concat() in Python.mp4

28.7 MB

17. Using .concat() in Python.vtt

5.3 KB

18. EXERCISE - Using .concat() in Python.html

0.2 KB

19. SOLUTION - Using .concat() in Python.html

0.1 KB

20. Reordering Columns in a Pandas DataFrame in Python.mp4

10.5 MB

20. Reordering Columns in a Pandas DataFrame in Python.vtt

1.9 KB

21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html

0.2 KB

22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html

0.5 KB

23. Creating Checkpoints while Coding in Jupyter.mp4

18.2 MB

23. Creating Checkpoints while Coding in Jupyter.vtt

3.8 KB

24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html

0.1 KB

25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html

0.1 KB

26. Analyzing the Dates from the Initial Data Set.mp4

42.1 MB

26. Analyzing the Dates from the Initial Data Set.vtt

9.1 KB

27. Extracting the Month Value from the Date Column.mp4

35.5 MB

27. Extracting the Month Value from the Date Column.vtt

8.2 KB

28. Extracting the Day of the Week from the Date Column.mp4

20.1 MB

28. Extracting the Day of the Week from the Date Column.vtt

4.9 KB

29. EXERCISE - Removing the Date Column.html

1.2 KB

30. Analyzing Several Straightforward Columns for this Exercise.mp4

15.0 MB

30. Analyzing Several Straightforward Columns for this Exercise.vtt

4.7 KB

31. Working on Education, Children, and Pets.mp4

28.3 MB

31. Working on Education, Children, and Pets.vtt

6.1 KB

32. Final Remarks of this Section.mp4

14.2 MB

32. Final Remarks of this Section.vtt

2.7 KB

33. A Note on Exporting Your Data as a .csv File.html

0.9 KB

/assets/

01. Absenteeism-data.csv

32.8 KB

01. data-preprocessing-homework.pdf

137.7 KB

01. df-preprocessed.csv

29.8 KB

23. Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb

4.9 KB

29. Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb

7.5 KB

29. Absenteeism-Exercise-Preprocessing-LECTURES.ipynb

8.0 MB

29. Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb

8.5 KB

32. Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb

4.2 KB

32. Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb

8.7 KB

/61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/

01. Exploring the Problem with a Machine Learning Mindset.mp4

13.6 MB

01. Exploring the Problem with a Machine Learning Mindset.vtt

4.9 KB

02. Creating the Targets for the Logistic Regression.mp4

34.0 MB

02. Creating the Targets for the Logistic Regression.vtt

8.9 KB

03. Selecting the Inputs for the Logistic Regression.mp4

9.1 MB

03. Selecting the Inputs for the Logistic Regression.vtt

3.7 KB

04. Standardizing the Data.mp4

15.9 MB

04. Standardizing the Data.vtt

4.4 KB

05. Splitting the Data for Training and Testing.mp4

37.8 MB

05. Splitting the Data for Training and Testing.vtt

8.7 KB

06. Fitting the Model and Assessing its Accuracy.mp4

16.0 MB

06. Fitting the Model and Assessing its Accuracy.vtt

7.5 KB

07. Creating a Summary Table with the Coefficients and Intercept.mp4

28.3 MB

07. Creating a Summary Table with the Coefficients and Intercept.vtt

6.5 KB

08. Interpreting the Coefficients for Our Problem.mp4

43.1 MB

08. Interpreting the Coefficients for Our Problem.vtt

8.7 KB

09. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4

17.7 MB

09. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt

5.4 KB

10. Interpreting the Coefficients of the Logistic Regression.mp4

15.9 MB

10. Interpreting the Coefficients of the Logistic Regression.vtt

7.7 KB

11. Backward Elimination or How to Simplify Your Model.mp4

33.4 MB

11. Backward Elimination or How to Simplify Your Model.vtt

5.5 KB

12. Testing the Model We Created.mp4

33.1 MB

12. Testing the Model We Created.vtt

6.7 KB

13. Saving the Model and Preparing it for Deployment.mp4

26.8 MB

13. Saving the Model and Preparing it for Deployment.vtt

5.9 KB

14. ARTICLE - A Note on 'pickling'.html

2.2 KB

15. EXERCISE - Saving the Model (and Scaler).html

0.3 KB

16. Preparing the Deployment of the Model through a Module.mp4

29.9 MB

16. Preparing the Deployment of the Model through a Module.vtt

6.0 KB

/assets/

01. Absenteeism-preprocessed.csv

29.8 KB

/62. Case Study - Loading the 'absenteeism_module'/

01. Are You Sure You're All Set.html

0.5 KB

02. Deploying the 'absenteeism_module' - Part I.mp4

20.6 MB

02. Deploying the 'absenteeism_module' - Part I.vtt

5.1 KB

03. Deploying the 'absenteeism_module' - Part II.mp4

47.3 MB

03. Deploying the 'absenteeism_module' - Part II.vtt

8.2 KB

04. Exporting the Obtained Data Set as a .csv.html

1.0 KB

/assets/

01. Absenteeism-Exercise-Integration.ipynb

63.8 KB

01. absenteeism-module.py

6.8 KB

01. Absenteeism-new-data.csv

1.9 KB

01. model

1.0 KB

01. scaler

1.9 KB

04. Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb

1.0 KB

/63. Case Study - Analyzing the Predicted Outputs in Tableau/

01. EXERCISE - Age vs Probability.html

0.4 KB

02. Analyzing Age vs Probability in Tableau.mp4

40.6 MB

02. Analyzing Age vs Probability in Tableau.vtt

10.5 KB

03. EXERCISE - Reasons vs Probability.html

0.4 KB

04. Analyzing Reasons vs Probability in Tableau.mp4

42.2 MB

04. Analyzing Reasons vs Probability in Tableau.vtt

9.9 KB

05. EXERCISE - Transportation Expense vs Probability.html

0.6 KB

06. Analyzing Transportation Expense vs Probability in Tableau.mp4

17.3 MB

06. Analyzing Transportation Expense vs Probability in Tableau.vtt

7.8 KB

/assets/

01. Absenteeism-predictions.csv

2.2 KB

02. Absenteeism-predictions.csv

2.2 KB

/64. Appendix - Additional Python Tools/

01. Using the .format() Method.mp4

26.9 MB

01. Using the .format() Method.vtt

13.0 KB

02. Iterating Over Range Objects.mp4

13.2 MB

02. Iterating Over Range Objects.vtt

6.6 KB

03. Introduction to Nested For Loops.mp4

12.8 MB

03. Introduction to Nested For Loops.vtt

8.7 KB

04. Triple Nested For Loops.mp4

34.6 MB

04. Triple Nested For Loops.vtt

8.7 KB

05. List Comprehensions.mp4

45.3 MB

05. List Comprehensions.vtt

13.1 KB

06. Anonymous (Lambda) Functions.mp4

23.9 MB

06. Anonymous (Lambda) Functions.vtt

10.7 KB

/assets/

01. Additional-Python-Tools-Exercises.ipynb

11.7 KB

01. Additional-Python-Tools-Lectures.ipynb

13.8 KB

01. Additional-Python-Tools-Solutions.ipynb

26.1 KB

06. Additional-Python-Tools-Exercises.ipynb

11.7 KB

06. Additional-Python-Tools-Lectures.ipynb

13.8 KB

06. Additional-Python-Tools-Solutions.ipynb

26.1 KB

/65. Appendix - pandas Fundamentals/

01. Introduction to pandas Series.mp4

26.2 MB

01. Introduction to pandas Series.vtt

11.1 KB

02. A Note on Completing the Upcoming Coding Exercises.html

3.0 KB

03. Working with Methods in Python - Part I.mp4

13.9 MB

03. Working with Methods in Python - Part I.vtt

7.4 KB

04. Working with Methods in Python - Part II.mp4

9.4 MB

04. Working with Methods in Python - Part II.vtt

4.0 KB

05. Parameters and Arguments in pandas.mp4

22.2 MB

05. Parameters and Arguments in pandas.vtt

5.9 KB

06. Using .unique() and .nunique().mp4

25.5 MB

06. Using .unique() and .nunique().vtt

6.0 KB

07. Using .sort_values().mp4

16.0 MB

07. Using .sort_values().vtt

5.7 KB

08. Introduction to pandas DataFrames - Part I.mp4

13.1 MB

08. Introduction to pandas DataFrames - Part I.vtt

7.5 KB

09. Introduction to pandas DataFrames - Part II.mp4

18.7 MB

09. Introduction to pandas DataFrames - Part II.vtt

8.2 KB

10. pandas DataFrames - Common Attributes.mp4

26.9 MB

10. pandas DataFrames - Common Attributes.vtt

6.7 KB

11. Data Selection in pandas DataFrames.mp4

39.1 MB

11. Data Selection in pandas DataFrames.vtt

10.8 KB

12. pandas DataFrames - Indexing with .iloc[].mp4

33.8 MB

12. pandas DataFrames - Indexing with .iloc[].vtt

8.5 KB

13. pandas DataFrames - Indexing with .loc[].mp4

21.7 MB

13. pandas DataFrames - Indexing with .loc[].vtt

5.7 KB

/assets/

01. Lending-company.csv

115.1 KB

01. Location.csv

13.8 KB

01. pandas-Fundamentals-Exercises.ipynb

31.7 KB

01. pandas-Fundamentals-Lectures.ipynb

21.8 KB

01. pandas-Fundamentals-Solutions.ipynb

121.2 KB

01. Region.csv

10.5 KB

01. Sales-products.csv

155.9 KB

13. Lending-company.csv

115.1 KB

13. Location.csv

13.8 KB

13. pandas-Fundamentals-Exercises.ipynb

31.7 KB

13. pandas-Fundamentals-Lectures.ipynb

21.8 KB

13. pandas-Fundamentals-Solutions.ipynb

121.2 KB

13. Region.csv

10.5 KB

13. Sales-products.csv

155.9 KB

/66. Bonus Lecture/

01. Bonus Lecture Next Steps.html

4.4 KB

/assets/

01. 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf

16.3 MB

 

Total files 1493


Copyright © 2025 FileMood.com