FileMood

Download [Tutorialsplanet.NET] Udemy - Deep Learning with TensorFlow 2.0 [2020]

Tutorialsplanet NET Udemy Deep Learning with TensorFlow 2020

Name

[Tutorialsplanet.NET] Udemy - Deep Learning with TensorFlow 2.0 [2020]

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

2.0 GB

Total Files

299

Hash

AF3A5895ECC7A288538C1CBCD14F00A0DE0DD699

/1. Welcome! Course introduction/

1. Meet your instructors and why you should study machine learning.mp4

110.9 MB

1. Meet your instructors and why you should study machine learning.srt

10.4 KB

2. What does the course cover.mp4

17.1 MB

2. What does the course cover.srt

6.4 KB

3. What does the course cover - Quiz.html

0.2 KB

4. Download All Resources and Important FAQ.html

0.7 KB

/10. Gradient descent and learning rates/

1. Stochastic gradient descent.mp4

9.8 MB

1. Stochastic gradient descent.srt

5.0 KB

2. Gradient descent pitfalls.mp4

4.5 MB

2. Gradient descent pitfalls.srt

2.9 KB

3. Momentum.mp4

6.4 MB

3. Momentum.srt

3.6 KB

4. Learning rate schedules.mp4

10.8 MB

4. Learning rate schedules.srt

6.1 KB

5. Learning rate schedules. A picture.mp4

3.3 MB

5. Learning rate schedules. A picture.srt

2.2 KB

6. Adaptive learning rate schedules.mp4

9.3 MB

6. Adaptive learning rate schedules.srt

5.3 KB

7. Adaptive moment estimation.mp4

8.1 MB

7. Adaptive moment estimation.srt

3.4 KB

/11. Preprocessing/

1. Preprocessing introduction.mp4

8.8 MB

1. Preprocessing introduction.srt

3.9 KB

2. Basic preprocessing.mp4

3.8 MB

2. Basic preprocessing.srt

1.7 KB

3. Standardization.mp4

8.7 MB

3. Standardization.srt

6.1 KB

4. Dealing with categorical data.mp4

6.4 MB

4. Dealing with categorical data.srt

2.8 KB

5. One-hot and binary encoding.mp4

6.5 MB

5. One-hot and binary encoding.srt

4.9 KB

/12. The MNIST example/

1. The dataset.mp4

14.0 MB

1. The dataset.srt

3.7 KB

10. Learning.mp4

42.9 MB

10. Learning.srt

8.1 KB

10.1 TensorFlow MNIST - Part 6 with comments.html

0.2 KB

11. MNIST - exercises.html

2.0 KB

11.1 TensorFlow MNIST - All Exercises.html

0.1 KB

12. MNIST - solutions.html

2.2 KB

12.1 3. TensorFlow MNIST - Exercise 3 Solution.html

0.2 KB

12.10 7. TensorFlow MNIST - Exercise 7 Solution.html

0.2 KB

12.2 1. TensorFlow MNIST - Exercise 1 Solution.html

0.2 KB

12.3 2. TensorFlow MNIST - Exercise 2 Solution.html

0.2 KB

12.4 4. TensorFlow MNIST - Exercise 4 Solution.html

0.2 KB

12.5 5. TensorFlow MNIST - Exercise 5 Solution.html

0.2 KB

12.6 8. TensorFlow MNIST - Exercise 8 Solution.html

0.2 KB

12.7 10. TensorFlow MNIST - Exercise 10 Solution.html

0.2 KB

12.8 9. TensorFlow MNIST - Exercise 9 Solution.html

0.2 KB

12.9 6. TensorFlow MNIST - Exercise 6 Solution.html

0.2 KB

13. Testing the model.mp4

31.0 MB

13. Testing the model.srt

6.2 KB

13.1 TensorFlow MNIST - Complete Code.html

0.1 KB

13.2 TensorFlow MNIST - Complete Code with Comments.html

0.2 KB

2. How to tackle the MNIST.mp4

19.6 MB

2. How to tackle the MNIST.srt

3.6 KB

3. Importing the relevant packages and load the data.mp4

17.1 MB

3. Importing the relevant packages and load the data.srt

3.1 KB

3.1 TensorFlow MNIST - Part 1 with comments.html

0.2 KB

4. Preprocess the data - create a validation dataset and scale the data.mp4

30.5 MB

4. Preprocess the data - create a validation dataset and scale the data.srt

6.4 KB

5. Preprocess the data - scale the test data.html

0.1 KB

5.1 TensorFlow MNIST - Part 2 with comments.html

0.2 KB

6. Preprocess the data - shuffle and batch the data.mp4

43.6 MB

6. Preprocess the data - shuffle and batch the data.srt

9.5 KB

7. Preprocess the data - shuffle and batch the data.html

0.1 KB

7.1 TensorFlow MNIST - Part 3 with comments.html

0.2 KB

8. Outline the model.mp4

29.6 MB

8. Outline the model.srt

7.4 KB

8.1 TensorFlow MNIST - Part 4 with comments.html

0.2 KB

9. Select the loss and the optimizer.mp4

14.6 MB

9. Select the loss and the optimizer.srt

3.1 KB

9.1 TensorFlow MNIST - Part 5 with comments.html

0.2 KB

/13. Business case/

1. Exploring the dataset and identifying predictors.mp4

69.5 MB

1. Exploring the dataset and identifying predictors.srt

10.9 KB

1.1 Audiobooks_data.csv

640.2 KB

10. Setting an early stopping mechanism - Exercise.html

0.2 KB

11. Testing the model.mp4

11.3 MB

11. Testing the model.srt

2.1 KB

11.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html

0.2 KB

12. Final exercise.html

0.4 KB

12.1 TensorFlow Business Case - Machine Learning Complete Code with Comments.html

0.2 KB

2. Outlining the business case solution.mp4

7.7 MB

2. Outlining the business case solution.srt

2.0 KB

3. Balancing the dataset.mp4

31.9 MB

3. Balancing the dataset.srt

4.6 KB

4. Preprocessing the data.mp4

88.4 MB

4. Preprocessing the data.srt

12.6 KB

4.1 TensorFlow Business Case - Preprocessing.html

0.1 KB

4.2 TensorFlow Business Case - Preprocessing with Comments.html

0.2 KB

4.3 Audiobooks_data.csv

640.2 KB

5. Preprocessing exercise.html

0.4 KB

5.1 TensorFlow Business Case - Preprocessing Exercise.html

0.2 KB

5.2 TensorFlow Business Case - Preprocessing Exercise Solution.html

0.2 KB

5.3 Audiobooks_data.csv

640.2 KB

6. Load the preprocessed data.mp4

18.4 MB

6. Load the preprocessed data.srt

4.8 KB

7. Load the preprocessed data - Exercise.html

0.1 KB

7.1 TensorFlow Business Case - Machine Learning - Part 1.html

0.2 KB

8. Learning and interpreting the result.mp4

32.7 MB

8. Learning and interpreting the result.srt

6.4 KB

8.1 TensorFlow Business Case - Machine Learning - Part 2.html

0.2 KB

9. Setting an early stopping mechanism.mp4

52.2 MB

9. Setting an early stopping mechanism.srt

8.0 KB

9.1 TensorFlow Business Case - Machine Learning - Part 3.html

0.2 KB

/14. Appendix Linear Algebra Fundamentals/

1. What is a Matrix.mp4

35.2 MB

1. What is a Matrix.srt

4.4 KB

10. Dot Product of Matrices.mp4

51.8 MB

10. Dot Product of Matrices.srt

9.7 KB

10.1 Dot Product of Matrices Python Notebook.html

0.2 KB

11. Why is Linear Algebra Useful.mp4

151.3 MB

11. Why is Linear Algebra Useful.srt

12.1 KB

2. Scalars and Vectors.mp4

35.5 MB

2. Scalars and Vectors.srt

3.9 KB

3. Linear Algebra and Geometry.mp4

52.2 MB

3. Linear Algebra and Geometry.srt

4.2 KB

4. Scalars, Vectors and Matrices in Python.mp4

28.0 MB

4. Scalars, Vectors and Matrices in Python.srt

6.3 KB

4.1 Scalars, Vectors and Matrices Python Notebook.html

0.2 KB

5. Tensors.mp4

23.6 MB

5. Tensors.srt

3.7 KB

5.1 Tensors Notebook.html

0.1 KB

6. Addition and Subtraction of Matrices.mp4

34.2 MB

6. Addition and Subtraction of Matrices.srt

4.1 KB

6.1 Addition and Subtraction Python Notebook.html

0.2 KB

7. Errors when Adding Matrices.mp4

11.7 MB

7. Errors when Adding Matrices.srt

2.6 KB

7.1 Errors when Adding Matrices Python Notebook.html

0.2 KB

8. Transpose of a Matrix.mp4

39.9 MB

8. Transpose of a Matrix.srt

5.5 KB

8.1 Transpose of a Matrix Python Notebook.html

0.2 KB

9. Dot Product of Vectors.mp4

25.1 MB

9. Dot Product of Vectors.srt

4.4 KB

9.1 Dot Product Python Notebook.html

0.2 KB

/15. Conclusion/

1. See how much you have learned.mp4

14.6 MB

1. See how much you have learned.srt

5.3 KB

2. What’s further out there in the machine and deep learning world.mp4

6.6 MB

2. What’s further out there in the machine and deep learning world.srt

2.6 KB

3. An overview of CNNs.mp4

11.5 MB

3. An overview of CNNs.srt

6.6 KB

4. How DeepMind uses deep learning.html

1.4 KB

5. An overview of RNNs.mp4

5.1 MB

5. An overview of RNNs.srt

3.7 KB

6. An overview of non-NN approaches.mp4

8.2 MB

6. An overview of non-NN approaches.srt

5.3 KB

/16. Bonus lecture/

1. Bonus lecture Next steps.html

2.6 KB

/2. Introduction to neural networks/

1. Introduction to neural networks.mp4

14.2 MB

1. Introduction to neural networks.srt

6.1 KB

1.1 Course Notes - Section 2.pdf

949.9 KB

10. The linear model. Multiple inputs.mp4

7.9 MB

10. The linear model. Multiple inputs.srt

3.2 KB

10.1 Course Notes - Section 2.pdf

949.9 KB

11. The linear model. Multiple inputs - Quiz.html

0.2 KB

12. The linear model. Multiple inputs and multiple outputs.mp4

40.1 MB

12. The linear model. Multiple inputs and multiple outputs.srt

5.6 KB

12.1 Course Notes - Section 2.pdf

949.9 KB

13. The linear model. Multiple inputs and multiple outputs - Quiz.html

0.2 KB

14. Graphical representation.mp4

6.7 MB

14. Graphical representation.srt

2.8 KB

14.1 Course Notes - Section 2.pdf

949.9 KB

15. Graphical representation - Quiz.html

0.2 KB

16. The objective function.mp4

6.0 MB

16. The objective function.srt

2.1 KB

16.1 Course Notes - Section 2.pdf

949.9 KB

17. The objective function - Quiz.html

0.2 KB

18. L2-norm loss.mp4

7.6 MB

18. L2-norm loss.srt

2.9 KB

18.1 Course Notes - Section 2.pdf

949.9 KB

19. L2-norm loss - Quiz.html

0.2 KB

2. Introduction to neural networks - Quiz.html

0.2 KB

20. Cross-entropy loss.mp4

11.9 MB

20. Cross-entropy loss.srt

5.5 KB

20.1 Course Notes - Section 2.pdf

949.9 KB

21. Cross-entropy loss - Quiz.html

0.2 KB

22. One parameter gradient descent.mp4

18.6 MB

22. One parameter gradient descent.srt

8.7 KB

22.1 Course Notes - Section 2.pdf

949.9 KB

22.2 GD-function-example.xlsx

43.4 KB

23. One parameter gradient descent - Quiz.html

0.2 KB

24. N-parameter gradient descent.mp4

41.4 MB

24. N-parameter gradient descent.srt

7.7 KB

24.1 Course Notes - Section 2.pdf

949.9 KB

25. N-parameter gradient descent - Quiz.html

0.2 KB

3. Training the model.mp4

9.2 MB

3. Training the model.srt

4.4 KB

3.1 Course Notes - Section 2.pdf

949.9 KB

4. Training the model - Quiz.html

0.2 KB

5. Types of machine learning.mp4

12.8 MB

5. Types of machine learning.srt

5.4 KB

5.1 Course Notes - Section 2.pdf

949.9 KB

6. Types of machine learning - Quiz.html

0.2 KB

7. The linear model.mp4

9.6 MB

7. The linear model.srt

4.0 KB

7.1 Course Notes - Section 2.pdf

949.9 KB

8. The linear model - Quiz.html

0.2 KB

9. Need Help with Linear Algebra.html

0.8 KB

/3. Setting up the working environment/

1. Setting up the environment - An introduction - Do not skip, please!.mp4

6.2 MB

1. Setting up the environment - An introduction - Do not skip, please!.srt

1.4 KB

10. Installing packages - exercise.html

0.2 KB

11. Installing packages - solution.html

0.3 KB

2. Why Python and why Jupyter.mp4

33.6 MB

2. Why Python and why Jupyter.srt

6.5 KB

3. Why Python and why Jupyter - Quiz.html

0.2 KB

4. Installing Anaconda.mp4

29.8 MB

4. Installing Anaconda.srt

4.7 KB

5. The Jupyter dashboard - part 1.mp4

9.1 MB

5. The Jupyter dashboard - part 1.srt

3.2 KB

6. The Jupyter dashboard - part 2.mp4

19.7 MB

6. The Jupyter dashboard - part 2.srt

6.9 KB

7. Jupyter Shortcuts.html

0.3 KB

7.1 Shortcuts for Jupyter.pdf

634.0 KB

8. The Jupyter dashboard - Quiz.html

0.2 KB

9. Installing TensorFlow 2.mp4

40.6 MB

9. Installing TensorFlow 2.srt

6.5 KB

/4. Minimal example - your first machine learning algorithm/

1. Minimal example - part 1.mp4

6.9 MB

1. Minimal example - part 1.srt

4.6 KB

1.1 Minimal example Part 1.html

0.1 KB

2. Minimal example - part 2.mp4

11.2 MB

2. Minimal example - part 2.srt

7.0 KB

2.1 Minimal example - part 2.html

0.1 KB

3. Minimal example - part 3.mp4

10.2 MB

3. Minimal example - part 3.srt

4.6 KB

3.1 Minimal example - part 3.html

0.1 KB

4. Minimal example - part 4.mp4

21.8 MB

4. Minimal example - part 4.srt

11.1 KB

4.1 Minimal example - part 4.html

0.1 KB

5. Minimal example - Exercises.html

1.6 KB

5.1 Minimal_example_Exercise_6_Solution.html

0.1 KB

5.10 Minimal_example_All_Exercises.html

0.1 KB

5.2 Minimal_example_Exercise_3.c. Solution.html

0.2 KB

5.3 Minimal_example_Exercise_4_Solution.html

0.1 KB

5.4 Minimal_example_Exercise_3.a. Solution.html

0.2 KB

5.5 Minimal_example_Exercise_5_Solution.html

0.1 KB

5.6 Minimal_example_Exercise_1_Solution.html

0.1 KB

5.7 Minimal_example_Exercise_3.d. Solution.html

0.2 KB

5.8 Minimal_example_Exercise_3.b. Solution.html

0.2 KB

5.9 Minimal_example_Exercise_2_Solution.html

0.1 KB

/5. TensorFlow - An introduction/

1. TensorFlow outline.mp4

35.2 MB

1. TensorFlow outline.srt

5.4 KB

2. TensorFlow 2 intro.mp4

23.1 MB

2. TensorFlow 2 intro.srt

3.7 KB

3. A Note on Coding in TensorFlow.mp4

7.1 MB

3. A Note on Coding in TensorFlow.srt

1.4 KB

4. Types of file formats in TensorFlow and data handling.mp4

17.2 MB

4. Types of file formats in TensorFlow and data handling.srt

3.6 KB

4.1 TensorFlow Minimal Example - Part 1.html

0.1 KB

5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.mp4

36.4 MB

5. Model layout - inputs, outputs, targets, weights, biases, optimizer and loss.srt

8.0 KB

5.1 TensorFlow Minimal Example - Part 2.html

0.1 KB

6. Interpreting the result and extracting the weights and bias.mp4

31.7 MB

6. Interpreting the result and extracting the weights and bias.srt

6.3 KB

6.1 TensorFlow Minimal Example - Part 3.html

0.1 KB

7. Cutomizing your model.mp4

24.0 MB

7. Cutomizing your model.srt

4.2 KB

7.1 TensorFlow Minimal Example - Complete Code with Comments.html

0.2 KB

7.2 TensorFlow Minimal Example - Complete Code.html

0.1 KB

8. Minimal example with TensorFlow - Exercises.html

1.4 KB

8.1 TensorFlow Minimal Example - Exercise 2_2 - Solution.html

0.2 KB

8.2 TensorFlow Minimal Example - Exercise 1 - Solution.html

0.2 KB

8.3 TensorFlow Minimal Example - Exercise 3 - Solution.html

0.2 KB

8.4 TensorFlow Minimal Example - Exercise 2_1 - Solution.html

0.2 KB

8.5 TensorFlow Minimal Example - All Exercises.html

0.2 KB

/6. Going deeper Introduction to deep neural networks/

1. Layers.mp4

5.0 MB

1. Layers.srt

2.5 KB

1.1 Course Notes - Section 6.pdf

958.9 KB

2. What is a deep net.mp4

7.1 MB

2. What is a deep net.srt

3.4 KB

2.1 Course Notes - Section 6.pdf

958.9 KB

3. Understanding deep nets in depth.mp4

14.0 MB

3. Understanding deep nets in depth.srt

6.8 KB

4. Why do we need non-linearities.mp4

9.4 MB

4. Why do we need non-linearities.srt

3.9 KB

5. Activation functions.mp4

9.2 MB

5. Activation functions.srt

5.3 KB

6. Softmax activation.mp4

7.7 MB

6. Softmax activation.srt

4.4 KB

7. Backpropagation.mp4

11.6 MB

7. Backpropagation.srt

4.5 KB

8. Backpropagation - visual representation.mp4

7.2 MB

8. Backpropagation - visual representation.srt

4.1 KB

/7. Backpropagation. A peek into the Mathematics of Optimization/

1. Backpropagation. A peek into the Mathematics of Optimization.html

0.5 KB

1.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf

186.8 KB

/8. Overfitting/

1. Underfitting and overfitting.mp4

11.6 MB

1. Underfitting and overfitting.srt

5.8 KB

2. Underfitting and overfitting - classification.mp4

7.1 MB

2. Underfitting and overfitting - classification.srt

2.8 KB

3. Training and validation.mp4

9.7 MB

3. Training and validation.srt

5.0 KB

4. Training, validation, and test.mp4

7.8 MB

4. Training, validation, and test.srt

3.6 KB

5. N-fold cross validation.mp4

7.3 MB

5. N-fold cross validation.srt

4.3 KB

6. Early stopping.mp4

9.9 MB

6. Early stopping.srt

7.0 KB

/9. Initialization/

1. Initialization - Introduction.mp4

8.4 MB

1. Initialization - Introduction.srt

3.6 KB

2. Types of simple initializations.mp4

5.9 MB

2. Types of simple initializations.srt

3.8 KB

3. Xavier initialization.mp4

6.1 MB

3. Xavier initialization.srt

3.8 KB

/

[Tutorialsplanet.NET].url

0.1 KB

 

Total files 299


Copyright © 2025 FileMood.com