Tutorialsplanet NET Udemy Master statistics machine learning intuition math code |
||
Name |
[Tutorialsplanet.NET] Udemy - Master statistics & machine learning - intuition, math, code |
DOWNLOAD Copy Link |
Total Size |
13.8 GB |
|
Total Files |
674 |
|
Last Seen |
2024-12-21 23:35 |
|
Hash |
01E1CBFE829774CF8A044C9227D0CFBF4675C91B |
/01 - Introductions/ |
|
|
40.1 MB |
|
6.2 KB |
|
5.5 KB |
|
28.4 MB |
|
6.1 KB |
|
5.3 KB |
|
50.7 MB |
|
13.6 KB |
|
11.8 KB |
|
25.5 MB |
|
8.3 KB |
|
7.2 KB |
005 (optional) Entering time-stamped notes in the Udemy video player.mp4 |
7.4 MB |
005 (optional) Entering time-stamped notes in the Udemy video player_en.srt |
3.2 KB |
005 (optional) Entering time-stamped notes in the Udemy video player_en.vtt |
2.7 KB |
|
3.8 KB |
|
0.1 KB |
/02 - Math prerequisites/ |
|
|
29.4 MB |
|
4.3 KB |
|
3.8 KB |
|
7.9 MB |
|
5.8 KB |
|
5.1 KB |
|
13.5 MB |
|
8.9 KB |
|
7.7 KB |
|
8.1 MB |
|
6.1 KB |
|
5.3 KB |
|
7.3 MB |
|
4.3 KB |
|
3.8 KB |
|
12.8 MB |
|
8.2 KB |
|
7.2 KB |
|
18.8 MB |
|
13.4 KB |
|
11.5 KB |
|
13.6 MB |
|
9.8 KB |
|
8.4 KB |
/03 - IMPORTANT_ Download course materials/ |
|
|
15.2 MB |
|
5.5 KB |
|
4.9 KB |
|
1.4 MB |
/04 - What are (is_) data_/ |
|
|
11.5 MB |
|
2.4 KB |
|
2.1 KB |
|
37.3 MB |
|
8.6 KB |
|
7.5 KB |
|
62.2 MB |
|
21.4 KB |
|
18.5 KB |
|
50.2 MB |
|
13.4 KB |
|
11.4 KB |
|
38.9 MB |
|
17.6 KB |
|
15.3 KB |
|
18.7 MB |
|
7.9 KB |
|
6.9 KB |
|
20.6 MB |
|
10.5 KB |
|
9.1 KB |
/05 - Visualizing data/ |
|
|
38.6 MB |
|
17.5 KB |
|
15.6 KB |
|
104.9 MB |
|
26.0 KB |
|
23.2 KB |
|
11.7 MB |
|
8.0 KB |
|
6.9 KB |
|
87.7 MB |
|
13.1 KB |
|
11.2 KB |
005 _Unsupervised learning__ Boxplots of normal and uniform noise.mp4 |
8.6 MB |
005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.srt |
3.8 KB |
005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.vtt |
3.3 KB |
|
45.9 MB |
|
16.2 KB |
|
14.0 KB |
|
140.0 MB |
|
24.8 KB |
|
21.3 KB |
|
12.4 MB |
|
3.5 KB |
|
3.0 KB |
|
17.3 MB |
|
8.7 KB |
|
7.5 KB |
|
82.8 MB |
|
19.8 KB |
|
17.1 KB |
|
18.9 MB |
|
8.8 KB |
|
7.6 KB |
|
26.9 MB |
|
12.8 KB |
|
11.0 KB |
|
39.1 MB |
|
11.1 KB |
|
9.6 KB |
|
3.9 MB |
|
2.5 KB |
|
2.2 KB |
/06 - Descriptive statistics/ |
|
|
22.5 MB |
|
6.5 KB |
|
5.7 KB |
|
26.7 MB |
|
11.7 KB |
|
10.0 KB |
|
33.5 MB |
|
17.2 KB |
|
14.9 KB |
|
317.8 MB |
|
47.0 KB |
|
40.4 KB |
005 _Unsupervised learning__ histograms of distributions.mp4 |
10.7 MB |
005 _Unsupervised learning__ histograms of distributions_en.srt |
3.1 KB |
005 _Unsupervised learning__ histograms of distributions_en.vtt |
2.7 KB |
|
10.7 MB |
|
7.8 KB |
|
6.9 KB |
|
40.6 MB |
|
19.4 KB |
|
16.7 KB |
|
35.9 MB |
|
18.6 KB |
|
16.1 KB |
|
69.8 MB |
|
20.6 KB |
|
17.8 KB |
010 _Unsupervised learning__ central tendencies with outliers.mp4 |
17.6 MB |
010 _Unsupervised learning__ central tendencies with outliers_en.srt |
4.4 KB |
010 _Unsupervised learning__ central tendencies with outliers_en.vtt |
3.9 KB |
011 Measures of dispersion (variance, standard deviation).mp4 |
56.7 MB |
011 Measures of dispersion (variance, standard deviation)_en.srt |
26.9 KB |
011 Measures of dispersion (variance, standard deviation)_en.vtt |
23.1 KB |
|
279.0 MB |
|
38.1 KB |
|
33.1 KB |
|
10.3 MB |
|
7.2 KB |
|
6.2 KB |
|
87.4 MB |
|
24.0 KB |
|
20.6 KB |
|
17.0 MB |
|
10.4 KB |
|
9.1 KB |
|
94.7 MB |
|
24.0 KB |
|
20.6 KB |
|
22.7 MB |
|
13.4 KB |
|
11.4 KB |
|
24.6 MB |
|
14.7 KB |
|
12.7 KB |
|
123.9 MB |
|
18.3 KB |
|
15.8 KB |
|
6.8 MB |
|
5.1 KB |
|
4.4 KB |
|
110.1 MB |
|
15.8 KB |
|
13.5 KB |
|
18.2 MB |
|
3.9 KB |
|
3.4 KB |
|
34.7 MB |
|
15.9 KB |
|
13.8 KB |
|
101.5 MB |
|
31.0 KB |
|
26.5 KB |
|
8.7 MB |
025 _Unsupervised learning__ entropy and number of bins_en.srt |
2.1 KB |
025 _Unsupervised learning__ entropy and number of bins_en.vtt |
1.8 KB |
/07 - Data normalizations and outliers/ |
|
|
12.1 MB |
|
5.8 KB |
|
5.1 KB |
|
38.0 MB |
|
14.6 KB |
|
12.6 KB |
|
70.0 MB |
|
19.7 KB |
|
17.0 KB |
|
12.3 MB |
|
7.4 KB |
|
6.4 KB |
|
42.4 MB |
|
12.9 KB |
|
11.0 KB |
|
7.1 MB |
006 _Unsupervised learning__ Invert the min-max scaling_en.srt |
3.7 KB |
006 _Unsupervised learning__ Invert the min-max scaling_en.vtt |
3.2 KB |
|
45.1 MB |
|
22.1 KB |
|
19.0 KB |
|
35.1 MB |
|
14.5 KB |
|
12.5 KB |
|
10.1 MB |
|
6.0 KB |
|
5.2 KB |
|
143.5 MB |
|
34.5 KB |
|
29.5 KB |
|
9.5 MB |
|
3.9 KB |
|
3.4 KB |
|
26.3 MB |
|
14.7 KB |
|
12.6 KB |
|
45.8 MB |
|
13.1 KB |
|
11.3 KB |
|
17.7 MB |
|
8.7 KB |
|
7.6 KB |
|
68.5 MB |
|
16.7 KB |
|
14.4 KB |
|
24.1 MB |
|
6.5 KB |
|
5.7 KB |
|
35.3 MB |
|
20.3 KB |
|
17.8 KB |
|
18.6 MB |
|
4.2 KB |
|
3.7 KB |
/08 - Probability theory/ |
|
|
43.1 MB |
|
18.4 KB |
|
15.9 KB |
|
39.3 MB |
|
14.5 KB |
|
12.4 KB |
|
39.3 MB |
|
15.5 KB |
|
13.4 KB |
|
155.6 MB |
|
22.6 KB |
|
19.3 KB |
|
12.6 MB |
|
7.1 KB |
|
6.2 KB |
006 _Unsupervised learning__ probabilities of odds-space.mp4 |
6.2 MB |
006 _Unsupervised learning__ probabilities of odds-space_en.srt |
3.2 KB |
006 _Unsupervised learning__ probabilities of odds-space_en.vtt |
2.8 KB |
|
140.7 MB |
|
18.9 KB |
|
16.3 KB |
|
69.4 MB |
|
16.4 KB |
|
14.4 KB |
|
47.6 MB |
|
20.9 KB |
|
18.2 KB |
|
100.6 MB |
|
14.8 KB |
|
12.9 KB |
011 _Unsupervised learning__ cdf's for various distributions.mp4 |
9.8 MB |
011 _Unsupervised learning__ cdf's for various distributions_en.srt |
3.4 KB |
011 _Unsupervised learning__ cdf's for various distributions_en.vtt |
3.0 KB |
|
130.9 MB |
|
28.4 KB |
|
24.4 KB |
|
9.3 MB |
|
3.9 KB |
|
3.4 KB |
|
111.2 MB |
014 Sampling variability, noise, and other annoyances_en.srt |
13.4 KB |
014 Sampling variability, noise, and other annoyances_en.vtt |
11.6 KB |
|
162.3 MB |
|
39.2 KB |
|
33.7 KB |
|
62.5 MB |
|
15.7 KB |
|
13.5 KB |
|
89.8 MB |
|
19.3 KB |
|
16.5 KB |
|
120.7 MB |
|
30.3 KB |
|
26.0 KB |
|
14.2 MB |
|
10.2 KB |
|
8.8 KB |
|
42.5 MB |
|
14.8 KB |
|
12.8 KB |
|
173.6 MB |
|
28.5 KB |
|
24.4 KB |
|
28.0 MB |
|
15.9 KB |
|
13.8 KB |
|
97.9 MB |
|
24.1 KB |
|
20.8 KB |
|
9.9 MB |
024 _Unsupervised learning__ Averaging pairs of numbers_en.srt |
3.3 KB |
024 _Unsupervised learning__ Averaging pairs of numbers_en.vtt |
2.8 KB |
/09 - Hypothesis testing/ |
|
|
95.6 MB |
|
24.9 KB |
|
21.4 KB |
|
51.5 MB |
002 What is an hypothesis and how do you specify one__en.srt |
23.8 KB |
002 What is an hypothesis and how do you specify one__en.vtt |
20.2 KB |
003 Sample distributions under null and alternative hypotheses.mp4 |
45.9 MB |
003 Sample distributions under null and alternative hypotheses_en.srt |
15.0 KB |
003 Sample distributions under null and alternative hypotheses_en.vtt |
13.1 KB |
|
111.6 MB |
004 P-values_ definition, tails, and misinterpretations_en.srt |
26.0 KB |
004 P-values_ definition, tails, and misinterpretations_en.vtt |
22.8 KB |
|
18.2 MB |
|
9.3 KB |
|
8.1 KB |
|
34.5 MB |
|
2.7 KB |
|
16.4 KB |
|
48.1 MB |
|
22.7 KB |
|
19.5 KB |
|
91.7 MB |
|
13.2 KB |
|
11.6 KB |
|
31.0 MB |
|
12.8 KB |
|
11.0 KB |
010 Statistical vs. theoretical vs. clinical significance.mp4 |
20.0 MB |
010 Statistical vs. theoretical vs. clinical significance_en.srt |
10.2 KB |
010 Statistical vs. theoretical vs. clinical significance_en.vtt |
8.8 KB |
|
29.6 MB |
|
16.8 KB |
|
14.7 KB |
012 Statistical significance vs. classification accuracy.mp4 |
44.6 MB |
012 Statistical significance vs. classification accuracy_en.srt |
17.4 KB |
012 Statistical significance vs. classification accuracy_en.vtt |
15.0 KB |
/10 - The t-test family/ |
|
|
33.7 MB |
|
19.4 KB |
|
16.8 KB |
|
56.6 MB |
|
11.9 KB |
|
10.3 KB |
|
165.6 MB |
|
32.0 KB |
|
27.3 KB |
|
30.0 MB |
|
4.2 KB |
|
3.7 KB |
|
98.4 MB |
|
19.4 KB |
|
16.8 KB |
|
221.6 MB |
|
32.9 KB |
|
28.2 KB |
|
17.6 MB |
007 _Unsupervised learning__ Importance of N for t-test_en.srt |
7.0 KB |
007 _Unsupervised learning__ Importance of N for t-test_en.vtt |
6.1 KB |
|
27.2 MB |
|
10.7 KB |
|
9.3 KB |
|
169.7 MB |
|
27.5 KB |
|
23.6 KB |
|
21.3 MB |
|
9.1 KB |
|
7.8 KB |
|
54.6 MB |
|
7.9 KB |
|
6.9 KB |
|
66.6 MB |
|
16.7 KB |
|
14.5 KB |
|
252.6 MB |
|
38.0 KB |
|
32.5 KB |
|
34.1 MB |
|
7.9 KB |
|
6.9 KB |
/11 - Confidence intervals on parameters/ |
|
001 What are confidence intervals and why do we need them_.mp4 |
31.3 MB |
001 What are confidence intervals and why do we need them__en.srt |
13.4 KB |
001 What are confidence intervals and why do we need them__en.vtt |
11.6 KB |
|
18.2 MB |
|
9.7 KB |
|
8.4 KB |
|
98.9 MB |
|
26.3 KB |
|
22.6 KB |
|
56.9 MB |
004 Confidence intervals via bootstrapping (resampling)_en.srt |
13.1 KB |
004 Confidence intervals via bootstrapping (resampling)_en.vtt |
11.4 KB |
|
143.4 MB |
|
22.2 KB |
|
18.9 KB |
006 _Unsupervised learning__ Confidence intervals for variance.mp4 |
9.0 MB |
006 _Unsupervised learning__ Confidence intervals for variance_en.srt |
1.9 KB |
006 _Unsupervised learning__ Confidence intervals for variance_en.vtt |
1.7 KB |
|
19.5 MB |
|
9.3 KB |
|
8.1 KB |
/12 - Correlation/ |
|
|
124.2 MB |
|
28.0 KB |
|
24.1 KB |
|
43.9 MB |
|
21.3 KB |
|
18.3 KB |
|
224.5 MB |
|
41.4 KB |
|
35.5 KB |
|
73.5 MB |
|
20.5 KB |
|
17.7 KB |
|
32.5 MB |
|
13.9 KB |
|
12.0 KB |
|
296.2 MB |
|
32.6 KB |
|
27.8 KB |
007 _Unsupervised learning__ average correlation matrices.mp4 |
19.4 MB |
007 _Unsupervised learning__ average correlation matrices_en.srt |
4.2 KB |
007 _Unsupervised learning__ average correlation matrices_en.vtt |
3.7 KB |
008 _Unsupervised learning__ correlation to covariance matrix.mp4 |
10.6 MB |
008 _Unsupervised learning__ correlation to covariance matrix_en.srt |
6.0 KB |
008 _Unsupervised learning__ correlation to covariance matrix_en.vtt |
5.2 KB |
|
62.2 MB |
|
15.8 KB |
|
13.7 KB |
|
113.5 MB |
|
30.1 KB |
|
25.8 KB |
|
17.4 MB |
|
10.1 KB |
|
8.9 KB |
|
24.9 MB |
|
11.0 KB |
|
9.5 KB |
|
29.9 MB |
|
10.1 KB |
|
8.8 KB |
|
44.8 MB |
|
11.4 KB |
|
9.8 KB |
|
16.7 MB |
|
1.9 KB |
|
1.7 KB |
016 _Unsupervised learning__ confidence interval on correlation.mp4 |
10.8 MB |
016 _Unsupervised learning__ confidence interval on correlation_en.srt |
3.4 KB |
016 _Unsupervised learning__ confidence interval on correlation_en.vtt |
3.0 KB |
|
31.6 MB |
|
15.6 KB |
|
13.4 KB |
|
193.2 MB |
|
18.0 KB |
|
23.5 KB |
019 _Unsupervised learning__ Does Kendall vs. Pearson matter_.mp4 |
15.7 MB |
019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.srt |
3.4 KB |
019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.vtt |
3.0 KB |
|
22.6 MB |
|
7.1 KB |
|
6.3 KB |
|
14.9 MB |
|
7.7 KB |
|
6.7 KB |
|
107.1 MB |
|
32.0 KB |
|
27.6 KB |
|
0.1 KB |
/13 - Analysis of Variance (ANOVA)/ |
|
|
144.4 MB |
|
26.8 KB |
|
23.2 KB |
|
88.3 MB |
|
29.1 KB |
|
25.2 KB |
|
48.1 MB |
|
26.2 KB |
|
22.9 KB |
|
20.9 MB |
|
10.7 KB |
|
9.4 KB |
|
66.4 MB |
|
19.3 KB |
|
16.6 KB |
|
109.5 MB |
|
30.1 KB |
|
25.8 KB |
|
46.5 MB |
|
21.1 KB |
|
18.1 KB |
|
181.1 MB |
|
26.3 KB |
|
22.5 KB |
|
76.7 MB |
|
18.8 KB |
|
16.3 KB |
|
37.7 MB |
|
16.5 KB |
|
14.3 KB |
|
119.7 MB |
|
22.0 KB |
|
18.8 KB |
/14 - Regression/ |
|
|
65.0 MB |
|
30.4 KB |
|
26.1 KB |
|
43.4 MB |
|
14.7 KB |
|
12.6 KB |
|
39.9 MB |
|
24.4 KB |
|
21.0 KB |
|
38.6 MB |
|
20.2 KB |
|
17.4 KB |
|
54.8 MB |
|
13.7 KB |
|
11.8 KB |
|
5.6 MB |
|
1.5 KB |
|
1.3 KB |
|
47.3 MB |
|
19.6 KB |
|
16.9 KB |
|
78.8 MB |
|
18.8 KB |
|
16.1 KB |
|
179.3 MB |
|
28.6 KB |
|
24.5 KB |
|
50.5 MB |
|
12.5 KB |
|
10.9 KB |
|
135.4 MB |
|
23.0 KB |
|
19.8 KB |
|
5.0 MB |
012 _Unsupervised learning__ Polynomial design matrix_en.srt |
1.1 KB |
012 _Unsupervised learning__ Polynomial design matrix_en.vtt |
1.0 KB |
|
55.3 MB |
|
26.1 KB |
|
22.3 KB |
|
85.2 MB |
|
14.5 KB |
|
12.4 KB |
|
126.7 MB |
|
26.0 KB |
|
22.2 KB |
|
5.1 MB |
|
2.8 KB |
|
2.4 KB |
|
41.0 MB |
|
17.7 KB |
|
15.5 KB |
|
16.8 MB |
|
9.8 KB |
|
8.6 KB |
/15 - Statistical power and sample sizes/ |
|
|
41.4 MB |
001 What is statistical power and why is it important__en.srt |
14.7 KB |
001 What is statistical power and why is it important__en.vtt |
12.8 KB |
|
37.9 MB |
|
17.0 KB |
|
14.7 KB |
|
32.7 MB |
|
7.0 KB |
|
5.9 KB |
/16 - Clustering and dimension-reduction/ |
|
|
56.9 MB |
|
21.5 KB |
|
18.5 KB |
|
241.5 MB |
|
35.2 KB |
|
30.1 KB |
|
13.5 MB |
003 _Unsupervised learning__ K-means and normalization_en.srt |
2.5 KB |
003 _Unsupervised learning__ K-means and normalization_en.vtt |
2.2 KB |
|
8.3 MB |
|
2.0 KB |
|
1.8 KB |
|
105.2 MB |
|
22.2 KB |
|
19.1 KB |
|
302.1 MB |
|
50.6 KB |
|
43.2 KB |
|
20.9 MB |
|
4.5 KB |
|
4.0 KB |
|
13.1 MB |
|
9.2 KB |
|
8.0 KB |
|
113.6 MB |
|
18.6 KB |
|
15.9 KB |
|
44.6 MB |
|
23.8 KB |
|
20.7 KB |
|
183.6 MB |
|
27.2 KB |
|
23.1 KB |
|
12.1 MB |
|
2.3 KB |
|
2.0 KB |
|
47.7 MB |
|
17.7 KB |
|
15.4 KB |
|
76.9 MB |
|
18.9 KB |
|
16.3 KB |
/17 - Signal detection theory/ |
|
|
14.6 MB |
|
8.9 KB |
|
7.7 KB |
|
35.8 MB |
|
19.7 KB |
|
16.8 KB |
|
72.9 MB |
|
22.4 KB |
|
19.2 KB |
|
22.9 MB |
|
12.5 KB |
|
10.8 KB |
|
23.9 MB |
|
6.5 KB |
|
5.6 KB |
|
112.5 MB |
|
33.9 KB |
|
29.4 KB |
|
67.5 MB |
|
11.2 KB |
|
9.8 KB |
|
57.3 MB |
|
11.9 KB |
|
10.4 KB |
|
12.1 MB |
009 _Unsupervised learning__ Make this plot look nicer__en.srt |
2.4 KB |
009 _Unsupervised learning__ Make this plot look nicer__en.vtt |
2.1 KB |
/18 - A real-world data journey/ |
|
|
0.1 KB |
|
55.6 MB |
|
6.4 KB |
|
5.6 KB |
|
211.1 MB |
|
24.1 KB |
|
21.0 KB |
|
101.0 MB |
|
12.6 KB |
|
10.9 KB |
|
36.0 MB |
|
9.5 KB |
|
8.4 KB |
|
119.0 MB |
|
15.7 KB |
|
13.7 KB |
|
262.0 MB |
|
30.0 KB |
|
26.1 KB |
|
143.8 MB |
|
19.0 KB |
|
16.5 KB |
|
121.2 MB |
|
16.5 KB |
|
14.4 KB |
|
45.9 MB |
|
8.9 KB |
|
7.8 KB |
|
24.2 KB |
|
23.0 KB |
/19 - Bonus section/ |
|
|
0.6 KB |
|
3.7 KB |
|
0.1 KB |
/ |
|
|
0.1 KB |
Total files 674 |
Copyright © 2024 FileMood.com