FileMood

Download [Tutorialsplanet.NET] Udemy - Master statistics & machine learning - intuition, math, code

Tutorialsplanet NET Udemy Master statistics machine learning intuition math code

Name

[Tutorialsplanet.NET] Udemy - Master statistics & machine learning - intuition, math, code

 DOWNLOAD Copy Link

Total Size

13.8 GB

Total Files

674

Last Seen

2024-12-21 23:35

Hash

01E1CBFE829774CF8A044C9227D0CFBF4675C91B

/01 - Introductions/

001 [Important] Getting the most out of this course.mp4

40.1 MB

001 [Important] Getting the most out of this course_en.srt

6.2 KB

001 [Important] Getting the most out of this course_en.vtt

5.5 KB

002 About using MATLAB or Python.mp4

28.4 MB

002 About using MATLAB or Python_en.srt

6.1 KB

002 About using MATLAB or Python_en.vtt

5.3 KB

003 Statistics guessing game_.mp4

50.7 MB

003 Statistics guessing game__en.srt

13.6 KB

003 Statistics guessing game__en.vtt

11.8 KB

004 Using the Q&A forum.mp4

25.5 MB

004 Using the Q&A forum_en.srt

8.3 KB

004 Using the Q&A forum_en.vtt

7.2 KB

005 (optional) Entering time-stamped notes in the Udemy video player.mp4

7.4 MB

005 (optional) Entering time-stamped notes in the Udemy video player_en.srt

3.2 KB

005 (optional) Entering time-stamped notes in the Udemy video player_en.vtt

2.7 KB

25299297-stats-intro-GuessTheTest.zip

3.8 KB

[Tutorialsplanet.NET].url

0.1 KB

/02 - Math prerequisites/

001 Should you memorize statistical formulas_.mp4

29.4 MB

001 Should you memorize statistical formulas__en.srt

4.3 KB

001 Should you memorize statistical formulas__en.vtt

3.8 KB

002 Arithmetic and exponents.mp4

7.9 MB

002 Arithmetic and exponents_en.srt

5.8 KB

002 Arithmetic and exponents_en.vtt

5.1 KB

003 Scientific notation.mp4

13.5 MB

003 Scientific notation_en.srt

8.9 KB

003 Scientific notation_en.vtt

7.7 KB

004 Summation notation.mp4

8.1 MB

004 Summation notation_en.srt

6.1 KB

004 Summation notation_en.vtt

5.3 KB

005 Absolute value.mp4

7.3 MB

005 Absolute value_en.srt

4.3 KB

005 Absolute value_en.vtt

3.8 KB

006 Natural exponent and logarithm.mp4

12.8 MB

006 Natural exponent and logarithm_en.srt

8.2 KB

006 Natural exponent and logarithm_en.vtt

7.2 KB

007 The logistic function.mp4

18.8 MB

007 The logistic function_en.srt

13.4 KB

007 The logistic function_en.vtt

11.5 KB

008 Rank and tied-rank.mp4

13.6 MB

008 Rank and tied-rank_en.srt

9.8 KB

008 Rank and tied-rank_en.vtt

8.4 KB

/03 - IMPORTANT_ Download course materials/

001 Download materials for the entire course_.mp4

15.2 MB

001 Download materials for the entire course__en.srt

5.5 KB

001 Download materials for the entire course__en.vtt

4.9 KB

32684220-statsML.zip

1.4 MB

/04 - What are (is_) data_/

001 Is _data_ singular or plural_______.mp4

11.5 MB

001 Is _data_ singular or plural________en.srt

2.4 KB

001 Is _data_ singular or plural________en.vtt

2.1 KB

002 Where do data come from and what do they mean_.mp4

37.3 MB

002 Where do data come from and what do they mean__en.srt

8.6 KB

002 Where do data come from and what do they mean__en.vtt

7.5 KB

003 Types of data_ categorical, numerical, etc.mp4

62.2 MB

003 Types of data_ categorical, numerical, etc_en.srt

21.4 KB

003 Types of data_ categorical, numerical, etc_en.vtt

18.5 KB

004 Code_ representing types of data on computers.mp4

50.2 MB

004 Code_ representing types of data on computers_en.srt

13.4 KB

004 Code_ representing types of data on computers_en.vtt

11.4 KB

005 Sample vs. population data.mp4

38.9 MB

005 Sample vs. population data_en.srt

17.6 KB

005 Sample vs. population data_en.vtt

15.3 KB

006 Samples, case reports, and anecdotes.mp4

18.7 MB

006 Samples, case reports, and anecdotes_en.srt

7.9 KB

006 Samples, case reports, and anecdotes_en.vtt

6.9 KB

007 The ethics of making up data.mp4

20.6 MB

007 The ethics of making up data_en.srt

10.5 KB

007 The ethics of making up data_en.vtt

9.1 KB

/05 - Visualizing data/

001 Bar plots.mp4

38.6 MB

001 Bar plots_en.srt

17.5 KB

001 Bar plots_en.vtt

15.6 KB

002 Code_ bar plots.mp4

104.9 MB

002 Code_ bar plots_en.srt

26.0 KB

002 Code_ bar plots_en.vtt

23.2 KB

003 Box-and-whisker plots.mp4

11.7 MB

003 Box-and-whisker plots_en.srt

8.0 KB

003 Box-and-whisker plots_en.vtt

6.9 KB

004 Code_ box plots.mp4

87.7 MB

004 Code_ box plots_en.srt

13.1 KB

004 Code_ box plots_en.vtt

11.2 KB

005 _Unsupervised learning__ Boxplots of normal and uniform noise.mp4

8.6 MB

005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.srt

3.8 KB

005 _Unsupervised learning__ Boxplots of normal and uniform noise_en.vtt

3.3 KB

006 Histograms.mp4

45.9 MB

006 Histograms_en.srt

16.2 KB

006 Histograms_en.vtt

14.0 KB

007 Code_ histograms.mp4

140.0 MB

007 Code_ histograms_en.srt

24.8 KB

007 Code_ histograms_en.vtt

21.3 KB

008 _Unsupervised learning__ Histogram proportion.mp4

12.4 MB

008 _Unsupervised learning__ Histogram proportion_en.srt

3.5 KB

008 _Unsupervised learning__ Histogram proportion_en.vtt

3.0 KB

009 Pie charts.mp4

17.3 MB

009 Pie charts_en.srt

8.7 KB

009 Pie charts_en.vtt

7.5 KB

010 Code_ pie charts.mp4

82.8 MB

010 Code_ pie charts_en.srt

19.8 KB

010 Code_ pie charts_en.vtt

17.1 KB

011 When to use lines instead of bars.mp4

18.9 MB

011 When to use lines instead of bars_en.srt

8.8 KB

011 When to use lines instead of bars_en.vtt

7.6 KB

012 Linear vs. logarithmic axis scaling.mp4

26.9 MB

012 Linear vs. logarithmic axis scaling_en.srt

12.8 KB

012 Linear vs. logarithmic axis scaling_en.vtt

11.0 KB

013 Code_ line plots.mp4

39.1 MB

013 Code_ line plots_en.srt

11.1 KB

013 Code_ line plots_en.vtt

9.6 KB

014 _Unsupervised learning__ log-scaled plots.mp4

3.9 MB

014 _Unsupervised learning__ log-scaled plots_en.srt

2.5 KB

014 _Unsupervised learning__ log-scaled plots_en.vtt

2.2 KB

/06 - Descriptive statistics/

001 Descriptive vs. inferential statistics.mp4

22.5 MB

001 Descriptive vs. inferential statistics_en.srt

6.5 KB

001 Descriptive vs. inferential statistics_en.vtt

5.7 KB

002 Accuracy, precision, resolution.mp4

26.7 MB

002 Accuracy, precision, resolution_en.srt

11.7 KB

002 Accuracy, precision, resolution_en.vtt

10.0 KB

003 Data distributions.mp4

33.5 MB

003 Data distributions_en.srt

17.2 KB

003 Data distributions_en.vtt

14.9 KB

004 Code_ data from different distributions.mp4

317.8 MB

004 Code_ data from different distributions_en.srt

47.0 KB

004 Code_ data from different distributions_en.vtt

40.4 KB

005 _Unsupervised learning__ histograms of distributions.mp4

10.7 MB

005 _Unsupervised learning__ histograms of distributions_en.srt

3.1 KB

005 _Unsupervised learning__ histograms of distributions_en.vtt

2.7 KB

006 The beauty and simplicity of Normal.mp4

10.7 MB

006 The beauty and simplicity of Normal_en.srt

7.8 KB

006 The beauty and simplicity of Normal_en.vtt

6.9 KB

007 Measures of central tendency (mean).mp4

40.6 MB

007 Measures of central tendency (mean)_en.srt

19.4 KB

007 Measures of central tendency (mean)_en.vtt

16.7 KB

008 Measures of central tendency (median, mode).mp4

35.9 MB

008 Measures of central tendency (median, mode)_en.srt

18.6 KB

008 Measures of central tendency (median, mode)_en.vtt

16.1 KB

009 Code_ computing central tendency.mp4

69.8 MB

009 Code_ computing central tendency_en.srt

20.6 KB

009 Code_ computing central tendency_en.vtt

17.8 KB

010 _Unsupervised learning__ central tendencies with outliers.mp4

17.6 MB

010 _Unsupervised learning__ central tendencies with outliers_en.srt

4.4 KB

010 _Unsupervised learning__ central tendencies with outliers_en.vtt

3.9 KB

011 Measures of dispersion (variance, standard deviation).mp4

56.7 MB

011 Measures of dispersion (variance, standard deviation)_en.srt

26.9 KB

011 Measures of dispersion (variance, standard deviation)_en.vtt

23.1 KB

012 Code_ Computing dispersion.mp4

279.0 MB

012 Code_ Computing dispersion_en.srt

38.1 KB

012 Code_ Computing dispersion_en.vtt

33.1 KB

013 Interquartile range (IQR).mp4

10.3 MB

013 Interquartile range (IQR)_en.srt

7.2 KB

013 Interquartile range (IQR)_en.vtt

6.2 KB

014 Code_ IQR.mp4

87.4 MB

014 Code_ IQR_en.srt

24.0 KB

014 Code_ IQR_en.vtt

20.6 KB

015 QQ plots.mp4

17.0 MB

015 QQ plots_en.srt

10.4 KB

015 QQ plots_en.vtt

9.1 KB

016 Code_ QQ plots.mp4

94.7 MB

016 Code_ QQ plots_en.srt

24.0 KB

016 Code_ QQ plots_en.vtt

20.6 KB

017 Statistical _moments_.mp4

22.7 MB

017 Statistical _moments__en.srt

13.4 KB

017 Statistical _moments__en.vtt

11.4 KB

018 Histograms part 2_ Number of bins.mp4

24.6 MB

018 Histograms part 2_ Number of bins_en.srt

14.7 KB

018 Histograms part 2_ Number of bins_en.vtt

12.7 KB

019 Code_ Histogram bins.mp4

123.9 MB

019 Code_ Histogram bins_en.srt

18.3 KB

019 Code_ Histogram bins_en.vtt

15.8 KB

020 Violin plots.mp4

6.8 MB

020 Violin plots_en.srt

5.1 KB

020 Violin plots_en.vtt

4.4 KB

021 Code_ violin plots.mp4

110.1 MB

021 Code_ violin plots_en.srt

15.8 KB

021 Code_ violin plots_en.vtt

13.5 KB

022 _Unsupervised learning__ asymmetric violin plots.mp4

18.2 MB

022 _Unsupervised learning__ asymmetric violin plots_en.srt

3.9 KB

022 _Unsupervised learning__ asymmetric violin plots_en.vtt

3.4 KB

023 Shannon entropy.mp4

34.7 MB

023 Shannon entropy_en.srt

15.9 KB

023 Shannon entropy_en.vtt

13.8 KB

024 Code_ entropy.mp4

101.5 MB

024 Code_ entropy_en.srt

31.0 KB

024 Code_ entropy_en.vtt

26.5 KB

025 _Unsupervised learning__ entropy and number of bins.mp4

8.7 MB

025 _Unsupervised learning__ entropy and number of bins_en.srt

2.1 KB

025 _Unsupervised learning__ entropy and number of bins_en.vtt

1.8 KB

/07 - Data normalizations and outliers/

001 Garbage in, garbage out (GIGO).mp4

12.1 MB

001 Garbage in, garbage out (GIGO)_en.srt

5.8 KB

001 Garbage in, garbage out (GIGO)_en.vtt

5.1 KB

002 Z-score standardization.mp4

38.0 MB

002 Z-score standardization_en.srt

14.6 KB

002 Z-score standardization_en.vtt

12.6 KB

003 Code_ z-score.mp4

70.0 MB

003 Code_ z-score_en.srt

19.7 KB

003 Code_ z-score_en.vtt

17.0 KB

004 Min-max scaling.mp4

12.3 MB

004 Min-max scaling_en.srt

7.4 KB

004 Min-max scaling_en.vtt

6.4 KB

005 Code_ min-max scaling.mp4

42.4 MB

005 Code_ min-max scaling_en.srt

12.9 KB

005 Code_ min-max scaling_en.vtt

11.0 KB

006 _Unsupervised learning__ Invert the min-max scaling.mp4

7.1 MB

006 _Unsupervised learning__ Invert the min-max scaling_en.srt

3.7 KB

006 _Unsupervised learning__ Invert the min-max scaling_en.vtt

3.2 KB

007 What are outliers and why are they dangerous_.mp4

45.1 MB

007 What are outliers and why are they dangerous__en.srt

22.1 KB

007 What are outliers and why are they dangerous__en.vtt

19.0 KB

008 Removing outliers_ z-score method.mp4

35.1 MB

008 Removing outliers_ z-score method_en.srt

14.5 KB

008 Removing outliers_ z-score method_en.vtt

12.5 KB

009 The modified z-score method.mp4

10.1 MB

009 The modified z-score method_en.srt

6.0 KB

009 The modified z-score method_en.vtt

5.2 KB

010 Code_ z-score for outlier removal.mp4

143.5 MB

010 Code_ z-score for outlier removal_en.srt

34.5 KB

010 Code_ z-score for outlier removal_en.vtt

29.5 KB

011 _Unsupervised learning__ z vs. modified-z.mp4

9.5 MB

011 _Unsupervised learning__ z vs. modified-z_en.srt

3.9 KB

011 _Unsupervised learning__ z vs. modified-z_en.vtt

3.4 KB

012 Multivariate outlier detection.mp4

26.3 MB

012 Multivariate outlier detection_en.srt

14.7 KB

012 Multivariate outlier detection_en.vtt

12.6 KB

013 Code_ Euclidean distance for outlier removal.mp4

45.8 MB

013 Code_ Euclidean distance for outlier removal_en.srt

13.1 KB

013 Code_ Euclidean distance for outlier removal_en.vtt

11.3 KB

014 Removing outliers by data trimming.mp4

17.7 MB

014 Removing outliers by data trimming_en.srt

8.7 KB

014 Removing outliers by data trimming_en.vtt

7.6 KB

015 Code_ Data trimming to remove outliers.mp4

68.5 MB

015 Code_ Data trimming to remove outliers_en.srt

16.7 KB

015 Code_ Data trimming to remove outliers_en.vtt

14.4 KB

016 Non-parametric solutions to outliers.mp4

24.1 MB

016 Non-parametric solutions to outliers_en.srt

6.5 KB

016 Non-parametric solutions to outliers_en.vtt

5.7 KB

017 Nonlinear data transformations.mp4

35.3 MB

017 Nonlinear data transformations_en.srt

20.3 KB

017 Nonlinear data transformations_en.vtt

17.8 KB

018 An outlier lecture on personal accountability.mp4

18.6 MB

018 An outlier lecture on personal accountability_en.srt

4.2 KB

018 An outlier lecture on personal accountability_en.vtt

3.7 KB

/08 - Probability theory/

001 What is probability_.mp4

43.1 MB

001 What is probability__en.srt

18.4 KB

001 What is probability__en.vtt

15.9 KB

002 Probability vs. proportion.mp4

39.3 MB

002 Probability vs. proportion_en.srt

14.5 KB

002 Probability vs. proportion_en.vtt

12.4 KB

003 Computing probabilities.mp4

39.3 MB

003 Computing probabilities_en.srt

15.5 KB

003 Computing probabilities_en.vtt

13.4 KB

004 Code_ compute probabilities.mp4

155.6 MB

004 Code_ compute probabilities_en.srt

22.6 KB

004 Code_ compute probabilities_en.vtt

19.3 KB

005 Probability and odds.mp4

12.6 MB

005 Probability and odds_en.srt

7.1 KB

005 Probability and odds_en.vtt

6.2 KB

006 _Unsupervised learning__ probabilities of odds-space.mp4

6.2 MB

006 _Unsupervised learning__ probabilities of odds-space_en.srt

3.2 KB

006 _Unsupervised learning__ probabilities of odds-space_en.vtt

2.8 KB

007 Probability mass vs. density.mp4

140.7 MB

007 Probability mass vs. density_en.srt

18.9 KB

007 Probability mass vs. density_en.vtt

16.3 KB

008 Code_ compute probability mass functions.mp4

69.4 MB

008 Code_ compute probability mass functions_en.srt

16.4 KB

008 Code_ compute probability mass functions_en.vtt

14.4 KB

009 Cumulative distribution functions.mp4

47.6 MB

009 Cumulative distribution functions_en.srt

20.9 KB

009 Cumulative distribution functions_en.vtt

18.2 KB

010 Code_ cdfs and pdfs.mp4

100.6 MB

010 Code_ cdfs and pdfs_en.srt

14.8 KB

010 Code_ cdfs and pdfs_en.vtt

12.9 KB

011 _Unsupervised learning__ cdf's for various distributions.mp4

9.8 MB

011 _Unsupervised learning__ cdf's for various distributions_en.srt

3.4 KB

011 _Unsupervised learning__ cdf's for various distributions_en.vtt

3.0 KB

012 Creating sample estimate distributions.mp4

130.9 MB

012 Creating sample estimate distributions_en.srt

28.4 KB

012 Creating sample estimate distributions_en.vtt

24.4 KB

013 Monte Carlo sampling.mp4

9.3 MB

013 Monte Carlo sampling_en.srt

3.9 KB

013 Monte Carlo sampling_en.vtt

3.4 KB

014 Sampling variability, noise, and other annoyances.mp4

111.2 MB

014 Sampling variability, noise, and other annoyances_en.srt

13.4 KB

014 Sampling variability, noise, and other annoyances_en.vtt

11.6 KB

015 Code_ sampling variability.mp4

162.3 MB

015 Code_ sampling variability_en.srt

39.2 KB

015 Code_ sampling variability_en.vtt

33.7 KB

016 Expected value.mp4

62.5 MB

016 Expected value_en.srt

15.7 KB

016 Expected value_en.vtt

13.5 KB

017 Conditional probability.mp4

89.8 MB

017 Conditional probability_en.srt

19.3 KB

017 Conditional probability_en.vtt

16.5 KB

018 Code_ conditional probabilities.mp4

120.7 MB

018 Code_ conditional probabilities_en.srt

30.3 KB

018 Code_ conditional probabilities_en.vtt

26.0 KB

019 Tree diagrams for conditional probabilities.mp4

14.2 MB

019 Tree diagrams for conditional probabilities_en.srt

10.2 KB

019 Tree diagrams for conditional probabilities_en.vtt

8.8 KB

020 The Law of Large Numbers.mp4

42.5 MB

020 The Law of Large Numbers_en.srt

14.8 KB

020 The Law of Large Numbers_en.vtt

12.8 KB

021 Code_ Law of Large Numbers in action.mp4

173.6 MB

021 Code_ Law of Large Numbers in action_en.srt

28.5 KB

021 Code_ Law of Large Numbers in action_en.vtt

24.4 KB

022 The Central Limit Theorem.mp4

28.0 MB

022 The Central Limit Theorem_en.srt

15.9 KB

022 The Central Limit Theorem_en.vtt

13.8 KB

023 Code_ the CLT in action.mp4

97.9 MB

023 Code_ the CLT in action_en.srt

24.1 KB

023 Code_ the CLT in action_en.vtt

20.8 KB

024 _Unsupervised learning__ Averaging pairs of numbers.mp4

9.9 MB

024 _Unsupervised learning__ Averaging pairs of numbers_en.srt

3.3 KB

024 _Unsupervised learning__ Averaging pairs of numbers_en.vtt

2.8 KB

/09 - Hypothesis testing/

001 IVs, DVs, models, and other stats lingo.mp4

95.6 MB

001 IVs, DVs, models, and other stats lingo_en.srt

24.9 KB

001 IVs, DVs, models, and other stats lingo_en.vtt

21.4 KB

002 What is an hypothesis and how do you specify one_.mp4

51.5 MB

002 What is an hypothesis and how do you specify one__en.srt

23.8 KB

002 What is an hypothesis and how do you specify one__en.vtt

20.2 KB

003 Sample distributions under null and alternative hypotheses.mp4

45.9 MB

003 Sample distributions under null and alternative hypotheses_en.srt

15.0 KB

003 Sample distributions under null and alternative hypotheses_en.vtt

13.1 KB

004 P-values_ definition, tails, and misinterpretations.mp4

111.6 MB

004 P-values_ definition, tails, and misinterpretations_en.srt

26.0 KB

004 P-values_ definition, tails, and misinterpretations_en.vtt

22.8 KB

005 P-z combinations that you should memorize.mp4

18.2 MB

005 P-z combinations that you should memorize_en.srt

9.3 KB

005 P-z combinations that you should memorize_en.vtt

8.1 KB

006 Degrees of freedom.mp4

34.5 MB

006 Degrees of freedom_en.srt

2.7 KB

006 Degrees of freedom_en.vtt

16.4 KB

007 Type 1 and Type 2 errors.mp4

48.1 MB

007 Type 1 and Type 2 errors_en.srt

22.7 KB

007 Type 1 and Type 2 errors_en.vtt

19.5 KB

008 Parametric vs. non-parametric tests.mp4

91.7 MB

008 Parametric vs. non-parametric tests_en.srt

13.2 KB

008 Parametric vs. non-parametric tests_en.vtt

11.6 KB

009 Multiple comparisons and Bonferroni correction.mp4

31.0 MB

009 Multiple comparisons and Bonferroni correction_en.srt

12.8 KB

009 Multiple comparisons and Bonferroni correction_en.vtt

11.0 KB

010 Statistical vs. theoretical vs. clinical significance.mp4

20.0 MB

010 Statistical vs. theoretical vs. clinical significance_en.srt

10.2 KB

010 Statistical vs. theoretical vs. clinical significance_en.vtt

8.8 KB

011 Cross-validation.mp4

29.6 MB

011 Cross-validation_en.srt

16.8 KB

011 Cross-validation_en.vtt

14.7 KB

012 Statistical significance vs. classification accuracy.mp4

44.6 MB

012 Statistical significance vs. classification accuracy_en.srt

17.4 KB

012 Statistical significance vs. classification accuracy_en.vtt

15.0 KB

/10 - The t-test family/

001 Purpose and interpretation of the t-test.mp4

33.7 MB

001 Purpose and interpretation of the t-test_en.srt

19.4 KB

001 Purpose and interpretation of the t-test_en.vtt

16.8 KB

002 One-sample t-test.mp4

56.6 MB

002 One-sample t-test_en.srt

11.9 KB

002 One-sample t-test_en.vtt

10.3 KB

003 Code_ One-sample t-test.mp4

165.6 MB

003 Code_ One-sample t-test_en.srt

32.0 KB

003 Code_ One-sample t-test_en.vtt

27.3 KB

004 _Unsupervised learning__ The role of variance.mp4

30.0 MB

004 _Unsupervised learning__ The role of variance_en.srt

4.2 KB

004 _Unsupervised learning__ The role of variance_en.vtt

3.7 KB

005 Two-samples t-test.mp4

98.4 MB

005 Two-samples t-test_en.srt

19.4 KB

005 Two-samples t-test_en.vtt

16.8 KB

006 Code_ Two-samples t-test.mp4

221.6 MB

006 Code_ Two-samples t-test_en.srt

32.9 KB

006 Code_ Two-samples t-test_en.vtt

28.2 KB

007 _Unsupervised learning__ Importance of N for t-test.mp4

17.6 MB

007 _Unsupervised learning__ Importance of N for t-test_en.srt

7.0 KB

007 _Unsupervised learning__ Importance of N for t-test_en.vtt

6.1 KB

008 Wilcoxon signed-rank (nonparametric t-test).mp4

27.2 MB

008 Wilcoxon signed-rank (nonparametric t-test)_en.srt

10.7 KB

008 Wilcoxon signed-rank (nonparametric t-test)_en.vtt

9.3 KB

009 Code_ Signed-rank test.mp4

169.7 MB

009 Code_ Signed-rank test_en.srt

27.5 KB

009 Code_ Signed-rank test_en.vtt

23.6 KB

010 Mann-Whitney U test (nonparametric t-test).mp4

21.3 MB

010 Mann-Whitney U test (nonparametric t-test)_en.srt

9.1 KB

010 Mann-Whitney U test (nonparametric t-test)_en.vtt

7.8 KB

011 Code_ Mann-Whitney U test.mp4

54.6 MB

011 Code_ Mann-Whitney U test_en.srt

7.9 KB

011 Code_ Mann-Whitney U test_en.vtt

6.9 KB

012 Permutation testing for t-test significance.mp4

66.6 MB

012 Permutation testing for t-test significance_en.srt

16.7 KB

012 Permutation testing for t-test significance_en.vtt

14.5 KB

013 Code_ permutation testing.mp4

252.6 MB

013 Code_ permutation testing_en.srt

38.0 KB

013 Code_ permutation testing_en.vtt

32.5 KB

014 _Unsupervised learning__ How many permutations_.mp4

34.1 MB

014 _Unsupervised learning__ How many permutations__en.srt

7.9 KB

014 _Unsupervised learning__ How many permutations__en.vtt

6.9 KB

/11 - Confidence intervals on parameters/

001 What are confidence intervals and why do we need them_.mp4

31.3 MB

001 What are confidence intervals and why do we need them__en.srt

13.4 KB

001 What are confidence intervals and why do we need them__en.vtt

11.6 KB

002 Computing confidence intervals via formula.mp4

18.2 MB

002 Computing confidence intervals via formula_en.srt

9.7 KB

002 Computing confidence intervals via formula_en.vtt

8.4 KB

003 Code_ compute confidence intervals by formula.mp4

98.9 MB

003 Code_ compute confidence intervals by formula_en.srt

26.3 KB

003 Code_ compute confidence intervals by formula_en.vtt

22.6 KB

004 Confidence intervals via bootstrapping (resampling).mp4

56.9 MB

004 Confidence intervals via bootstrapping (resampling)_en.srt

13.1 KB

004 Confidence intervals via bootstrapping (resampling)_en.vtt

11.4 KB

005 Code_ bootstrapping confidence intervals.mp4

143.4 MB

005 Code_ bootstrapping confidence intervals_en.srt

22.2 KB

005 Code_ bootstrapping confidence intervals_en.vtt

18.9 KB

006 _Unsupervised learning__ Confidence intervals for variance.mp4

9.0 MB

006 _Unsupervised learning__ Confidence intervals for variance_en.srt

1.9 KB

006 _Unsupervised learning__ Confidence intervals for variance_en.vtt

1.7 KB

007 Misconceptions about confidence intervals.mp4

19.5 MB

007 Misconceptions about confidence intervals_en.srt

9.3 KB

007 Misconceptions about confidence intervals_en.vtt

8.1 KB

/12 - Correlation/

001 Motivation and description of correlation.mp4

124.2 MB

001 Motivation and description of correlation_en.srt

28.0 KB

001 Motivation and description of correlation_en.vtt

24.1 KB

002 Covariance and correlation_ formulas.mp4

43.9 MB

002 Covariance and correlation_ formulas_en.srt

21.3 KB

002 Covariance and correlation_ formulas_en.vtt

18.3 KB

003 Code_ correlation coefficient.mp4

224.5 MB

003 Code_ correlation coefficient_en.srt

41.4 KB

003 Code_ correlation coefficient_en.vtt

35.5 KB

004 Code_ Simulate data with specified correlation.mp4

73.5 MB

004 Code_ Simulate data with specified correlation_en.srt

20.5 KB

004 Code_ Simulate data with specified correlation_en.vtt

17.7 KB

005 Correlation matrix.mp4

32.5 MB

005 Correlation matrix_en.srt

13.9 KB

005 Correlation matrix_en.vtt

12.0 KB

006 Code_ correlation matrix.mp4

296.2 MB

006 Code_ correlation matrix_en.srt

32.6 KB

006 Code_ correlation matrix_en.vtt

27.8 KB

007 _Unsupervised learning__ average correlation matrices.mp4

19.4 MB

007 _Unsupervised learning__ average correlation matrices_en.srt

4.2 KB

007 _Unsupervised learning__ average correlation matrices_en.vtt

3.7 KB

008 _Unsupervised learning__ correlation to covariance matrix.mp4

10.6 MB

008 _Unsupervised learning__ correlation to covariance matrix_en.srt

6.0 KB

008 _Unsupervised learning__ correlation to covariance matrix_en.vtt

5.2 KB

009 Partial correlation.mp4

62.2 MB

009 Partial correlation_en.srt

15.8 KB

009 Partial correlation_en.vtt

13.7 KB

010 Code_ partial correlation.mp4

113.5 MB

010 Code_ partial correlation_en.srt

30.1 KB

010 Code_ partial correlation_en.vtt

25.8 KB

011 The problem with Pearson.mp4

17.4 MB

011 The problem with Pearson_en.srt

10.1 KB

011 The problem with Pearson_en.vtt

8.9 KB

012 Nonparametric correlation_ Spearman rank.mp4

24.9 MB

012 Nonparametric correlation_ Spearman rank_en.srt

11.0 KB

012 Nonparametric correlation_ Spearman rank_en.vtt

9.5 KB

013 Fisher-Z transformation for correlations.mp4

29.9 MB

013 Fisher-Z transformation for correlations_en.srt

10.1 KB

013 Fisher-Z transformation for correlations_en.vtt

8.8 KB

014 Code_ Spearman correlation and Fisher-Z.mp4

44.8 MB

014 Code_ Spearman correlation and Fisher-Z_en.srt

11.4 KB

014 Code_ Spearman correlation and Fisher-Z_en.vtt

9.8 KB

015 _Unsupervised learning__ Spearman correlation.mp4

16.7 MB

015 _Unsupervised learning__ Spearman correlation_en.srt

1.9 KB

015 _Unsupervised learning__ Spearman correlation_en.vtt

1.7 KB

016 _Unsupervised learning__ confidence interval on correlation.mp4

10.8 MB

016 _Unsupervised learning__ confidence interval on correlation_en.srt

3.4 KB

016 _Unsupervised learning__ confidence interval on correlation_en.vtt

3.0 KB

017 Kendall's correlation for ordinal data.mp4

31.6 MB

017 Kendall's correlation for ordinal data_en.srt

15.6 KB

017 Kendall's correlation for ordinal data_en.vtt

13.4 KB

018 Code_ Kendall correlation.mp4

193.2 MB

018 Code_ Kendall correlation_en.srt

18.0 KB

018 Code_ Kendall correlation_en.vtt

23.5 KB

019 _Unsupervised learning__ Does Kendall vs. Pearson matter_.mp4

15.7 MB

019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.srt

3.4 KB

019 _Unsupervised learning__ Does Kendall vs. Pearson matter__en.vtt

3.0 KB

020 The subgroups correlation paradox.mp4

22.6 MB

020 The subgroups correlation paradox_en.srt

7.1 KB

020 The subgroups correlation paradox_en.vtt

6.3 KB

021 Cosine similarity.mp4

14.9 MB

021 Cosine similarity_en.srt

7.7 KB

021 Cosine similarity_en.vtt

6.7 KB

022 Code_ Cosine similarity vs. Pearson correlation.mp4

107.1 MB

022 Code_ Cosine similarity vs. Pearson correlation_en.srt

32.0 KB

022 Code_ Cosine similarity vs. Pearson correlation_en.vtt

27.6 KB

[Tutorialsplanet.NET].url

0.1 KB

/13 - Analysis of Variance (ANOVA)/

001 ANOVA intro, part1.mp4

144.4 MB

001 ANOVA intro, part1_en.srt

26.8 KB

001 ANOVA intro, part1_en.vtt

23.2 KB

002 ANOVA intro, part 2.mp4

88.3 MB

002 ANOVA intro, part 2_en.srt

29.1 KB

002 ANOVA intro, part 2_en.vtt

25.2 KB

003 Sum of squares.mp4

48.1 MB

003 Sum of squares_en.srt

26.2 KB

003 Sum of squares_en.vtt

22.9 KB

004 The F-test and the ANOVA table.mp4

20.9 MB

004 The F-test and the ANOVA table_en.srt

10.7 KB

004 The F-test and the ANOVA table_en.vtt

9.4 KB

005 The omnibus F-test and post-hoc comparisons.mp4

66.4 MB

005 The omnibus F-test and post-hoc comparisons_en.srt

19.3 KB

005 The omnibus F-test and post-hoc comparisons_en.vtt

16.6 KB

006 The two-way ANOVA.mp4

109.5 MB

006 The two-way ANOVA_en.srt

30.1 KB

006 The two-way ANOVA_en.vtt

25.8 KB

007 One-way ANOVA example.mp4

46.5 MB

007 One-way ANOVA example_en.srt

21.1 KB

007 One-way ANOVA example_en.vtt

18.1 KB

008 Code_ One-way ANOVA (independent samples).mp4

181.1 MB

008 Code_ One-way ANOVA (independent samples)_en.srt

26.3 KB

008 Code_ One-way ANOVA (independent samples)_en.vtt

22.5 KB

009 Code_ One-way repeated-measures ANOVA.mp4

76.7 MB

009 Code_ One-way repeated-measures ANOVA_en.srt

18.8 KB

009 Code_ One-way repeated-measures ANOVA_en.vtt

16.3 KB

010 Two-way ANOVA example.mp4

37.7 MB

010 Two-way ANOVA example_en.srt

16.5 KB

010 Two-way ANOVA example_en.vtt

14.3 KB

011 Code_ Two-way mixed ANOVA.mp4

119.7 MB

011 Code_ Two-way mixed ANOVA_en.srt

22.0 KB

011 Code_ Two-way mixed ANOVA_en.vtt

18.8 KB

/14 - Regression/

001 Introduction to GLM _ regression.mp4

65.0 MB

001 Introduction to GLM _ regression_en.srt

30.4 KB

001 Introduction to GLM _ regression_en.vtt

26.1 KB

002 Least-squares solution to the GLM.mp4

43.4 MB

002 Least-squares solution to the GLM_en.srt

14.7 KB

002 Least-squares solution to the GLM_en.vtt

12.6 KB

003 Evaluating regression models_ R2 and F.mp4

39.9 MB

003 Evaluating regression models_ R2 and F_en.srt

24.4 KB

003 Evaluating regression models_ R2 and F_en.vtt

21.0 KB

004 Simple regression.mp4

38.6 MB

004 Simple regression_en.srt

20.2 KB

004 Simple regression_en.vtt

17.4 KB

005 Code_ simple regression.mp4

54.8 MB

005 Code_ simple regression_en.srt

13.7 KB

005 Code_ simple regression_en.vtt

11.8 KB

006 _Unsupervised learning__ Compute R2 and F.mp4

5.6 MB

006 _Unsupervised learning__ Compute R2 and F_en.srt

1.5 KB

006 _Unsupervised learning__ Compute R2 and F_en.vtt

1.3 KB

007 Multiple regression.mp4

47.3 MB

007 Multiple regression_en.srt

19.6 KB

007 Multiple regression_en.vtt

16.9 KB

008 Standardizing regression coefficients.mp4

78.8 MB

008 Standardizing regression coefficients_en.srt

18.8 KB

008 Standardizing regression coefficients_en.vtt

16.1 KB

009 Code_ Multiple regression.mp4

179.3 MB

009 Code_ Multiple regression_en.srt

28.6 KB

009 Code_ Multiple regression_en.vtt

24.5 KB

010 Polynomial regression models.mp4

50.5 MB

010 Polynomial regression models_en.srt

12.5 KB

010 Polynomial regression models_en.vtt

10.9 KB

011 Code_ polynomial modeling.mp4

135.4 MB

011 Code_ polynomial modeling_en.srt

23.0 KB

011 Code_ polynomial modeling_en.vtt

19.8 KB

012 _Unsupervised learning__ Polynomial design matrix.mp4

5.0 MB

012 _Unsupervised learning__ Polynomial design matrix_en.srt

1.1 KB

012 _Unsupervised learning__ Polynomial design matrix_en.vtt

1.0 KB

013 Logistic regression.mp4

55.3 MB

013 Logistic regression_en.srt

26.1 KB

013 Logistic regression_en.vtt

22.3 KB

014 Code_ Logistic regression.mp4

85.2 MB

014 Code_ Logistic regression_en.srt

14.5 KB

014 Code_ Logistic regression_en.vtt

12.4 KB

015 Under- and over-fitting.mp4

126.7 MB

015 Under- and over-fitting_en.srt

26.0 KB

015 Under- and over-fitting_en.vtt

22.2 KB

016 _Unsupervised learning__ Overfit data.mp4

5.1 MB

016 _Unsupervised learning__ Overfit data_en.srt

2.8 KB

016 _Unsupervised learning__ Overfit data_en.vtt

2.4 KB

017 Comparing _nested_ models.mp4

41.0 MB

017 Comparing _nested_ models_en.srt

17.7 KB

017 Comparing _nested_ models_en.vtt

15.5 KB

018 What to do about missing data.mp4

16.8 MB

018 What to do about missing data_en.srt

9.8 KB

018 What to do about missing data_en.vtt

8.6 KB

/15 - Statistical power and sample sizes/

001 What is statistical power and why is it important_.mp4

41.4 MB

001 What is statistical power and why is it important__en.srt

14.7 KB

001 What is statistical power and why is it important__en.vtt

12.8 KB

002 Estimating statistical power and sample size.mp4

37.9 MB

002 Estimating statistical power and sample size_en.srt

17.0 KB

002 Estimating statistical power and sample size_en.vtt

14.7 KB

003 Compute power and sample size using G_Power.mp4

32.7 MB

003 Compute power and sample size using G_Power_en.srt

7.0 KB

003 Compute power and sample size using G_Power_en.vtt

5.9 KB

/16 - Clustering and dimension-reduction/

001 K-means clustering.mp4

56.9 MB

001 K-means clustering_en.srt

21.5 KB

001 K-means clustering_en.vtt

18.5 KB

002 Code_ k-means clustering.mp4

241.5 MB

002 Code_ k-means clustering_en.srt

35.2 KB

002 Code_ k-means clustering_en.vtt

30.1 KB

003 _Unsupervised learning__ K-means and normalization.mp4

13.5 MB

003 _Unsupervised learning__ K-means and normalization_en.srt

2.5 KB

003 _Unsupervised learning__ K-means and normalization_en.vtt

2.2 KB

004 _Unsupervised learning__ K-means on a Gauss blur.mp4

8.3 MB

004 _Unsupervised learning__ K-means on a Gauss blur_en.srt

2.0 KB

004 _Unsupervised learning__ K-means on a Gauss blur_en.vtt

1.8 KB

005 Clustering via dbscan.mp4

105.2 MB

005 Clustering via dbscan_en.srt

22.2 KB

005 Clustering via dbscan_en.vtt

19.1 KB

006 Code_ dbscan.mp4

302.1 MB

006 Code_ dbscan_en.srt

50.6 KB

006 Code_ dbscan_en.vtt

43.2 KB

007 _Unsupervised learning__ dbscan vs. k-means.mp4

20.9 MB

007 _Unsupervised learning__ dbscan vs. k-means_en.srt

4.5 KB

007 _Unsupervised learning__ dbscan vs. k-means_en.vtt

4.0 KB

008 K-nearest neighbor classification.mp4

13.1 MB

008 K-nearest neighbor classification_en.srt

9.2 KB

008 K-nearest neighbor classification_en.vtt

8.0 KB

009 Code_ KNN.mp4

113.6 MB

009 Code_ KNN_en.srt

18.6 KB

009 Code_ KNN_en.vtt

15.9 KB

010 Principal components analysis (PCA).mp4

44.6 MB

010 Principal components analysis (PCA)_en.srt

23.8 KB

010 Principal components analysis (PCA)_en.vtt

20.7 KB

011 Code_ PCA.mp4

183.6 MB

011 Code_ PCA_en.srt

27.2 KB

011 Code_ PCA_en.vtt

23.1 KB

012 _Unsupervised learning__ K-means on PC data.mp4

12.1 MB

012 _Unsupervised learning__ K-means on PC data_en.srt

2.3 KB

012 _Unsupervised learning__ K-means on PC data_en.vtt

2.0 KB

013 Independent components analysis (ICA).mp4

47.7 MB

013 Independent components analysis (ICA)_en.srt

17.7 KB

013 Independent components analysis (ICA)_en.vtt

15.4 KB

014 Code_ ICA.mp4

76.9 MB

014 Code_ ICA_en.srt

18.9 KB

014 Code_ ICA_en.vtt

16.3 KB

/17 - Signal detection theory/

001 The two perspectives of the world.mp4

14.6 MB

001 The two perspectives of the world_en.srt

8.9 KB

001 The two perspectives of the world_en.vtt

7.7 KB

002 d-prime.mp4

35.8 MB

002 d-prime_en.srt

19.7 KB

002 d-prime_en.vtt

16.8 KB

003 Code_ d-prime.mp4

72.9 MB

003 Code_ d-prime_en.srt

22.4 KB

003 Code_ d-prime_en.vtt

19.2 KB

004 Response bias.mp4

22.9 MB

004 Response bias_en.srt

12.5 KB

004 Response bias_en.vtt

10.8 KB

005 Code_ Response bias.mp4

23.9 MB

005 Code_ Response bias_en.srt

6.5 KB

005 Code_ Response bias_en.vtt

5.6 KB

006 F-score.mp4

112.5 MB

006 F-score_en.srt

33.9 KB

006 F-score_en.vtt

29.4 KB

007 Receiver operating characteristics (ROC).mp4

67.5 MB

007 Receiver operating characteristics (ROC)_en.srt

11.2 KB

007 Receiver operating characteristics (ROC)_en.vtt

9.8 KB

008 Code_ ROC curves.mp4

57.3 MB

008 Code_ ROC curves_en.srt

11.9 KB

008 Code_ ROC curves_en.vtt

10.4 KB

009 _Unsupervised learning__ Make this plot look nicer_.mp4

12.1 MB

009 _Unsupervised learning__ Make this plot look nicer__en.srt

2.4 KB

009 _Unsupervised learning__ Make this plot look nicer__en.vtt

2.1 KB

/18 - A real-world data journey/

001 Note about the code for this section.html

0.1 KB

002 Introduction.mp4

55.6 MB

002 Introduction_en.srt

6.4 KB

002 Introduction_en.vtt

5.6 KB

003 MATLAB_ Import and clean the marriage data.mp4

211.1 MB

003 MATLAB_ Import and clean the marriage data_en.srt

24.1 KB

003 MATLAB_ Import and clean the marriage data_en.vtt

21.0 KB

004 MATLAB_ Import the divorce data.mp4

101.0 MB

004 MATLAB_ Import the divorce data_en.srt

12.6 KB

004 MATLAB_ Import the divorce data_en.vtt

10.9 KB

005 MATLAB_ More data visualizations.mp4

36.0 MB

005 MATLAB_ More data visualizations_en.srt

9.5 KB

005 MATLAB_ More data visualizations_en.vtt

8.4 KB

006 MATLAB_ Inferential statistics.mp4

119.0 MB

006 MATLAB_ Inferential statistics_en.srt

15.7 KB

006 MATLAB_ Inferential statistics_en.vtt

13.7 KB

007 Python_ Import and clean the marriage data.mp4

262.0 MB

007 Python_ Import and clean the marriage data_en.srt

30.0 KB

007 Python_ Import and clean the marriage data_en.vtt

26.1 KB

008 Python_ Import the divorce data.mp4

143.8 MB

008 Python_ Import the divorce data_en.srt

19.0 KB

008 Python_ Import the divorce data_en.vtt

16.5 KB

009 Python_ Inferential statistics.mp4

121.2 MB

009 Python_ Inferential statistics_en.srt

16.5 KB

009 Python_ Inferential statistics_en.vtt

14.4 KB

010 Take-home messages.mp4

45.9 MB

010 Take-home messages_en.srt

8.9 KB

010 Take-home messages_en.vtt

7.8 KB

35855730-state-marriage-rates-90-95-99-19.xlsx

24.2 KB

35855734-state-divorce-rates-90-95-99-19.xlsx

23.0 KB

/19 - Bonus section/

001 About deep learning.html

0.6 KB

002 Bonus content.html

3.7 KB

[Tutorialsplanet.NET].url

0.1 KB

/

[Tutorialsplanet.NET].url

0.1 KB

 

Total files 674


Copyright © 2024 FileMood.com