FileMood

Download [Tutorialsplanet.NET] Udemy - The Complete Neural Networks Bootcamp Theory, Applications

Tutorialsplanet NET Udemy The Complete Neural Networks Bootcamp Theory Applications

Name

[Tutorialsplanet.NET] Udemy - The Complete Neural Networks Bootcamp Theory, Applications

 DOWNLOAD Copy Link

Total Size

20.2 GB

Total Files

584

Last Seen

2024-11-20 00:09

Hash

43F148D4AC20CC5BF65B0EFEAC89FFD575208065

/1. How Neural Networks and Backpropagation Works/

1. What Can Deep Learning Do-en_US.srt

18.7 KB

1. What Can Deep Learning Do.mp4

163.8 MB

2. The Rise of Deep Learning-en_US.srt

8.3 KB

2. The Rise of Deep Learning.mp4

43.8 MB

3. The Essence of Neural Networks-en_US.srt

13.1 KB

3. The Essence of Neural Networks.mp4

52.4 MB

4. The Perceptron-en_US.srt

21.7 KB

4. The Perceptron.mp4

116.3 MB

5. Gradient Descent-en_US.srt

15.6 KB

5. Gradient Descent.mp4

42.6 MB

6. The Forward Propagation-en_US.srt

14.1 KB

6. The Forward Propagation.mp4

54.8 MB

7. Backpropagation Part 1-en_US.srt

14.5 KB

7. Backpropagation Part 1.mp4

30.8 MB

8. Backpropagation Part 2-en_US.srt

12.3 KB

8. Backpropagation Part 2.mp4

29.2 MB

BEFORE STARTING...PLEASE READ THIS.html

0.6 KB

Before Proceeding with the Backpropagation.html

0.3 KB

/10. Visualize the Learning Process/

1. Visualize Learning Part 1-en_US.srt

12.3 KB

1. Visualize Learning Part 1.mp4

25.6 MB

2. Visualize Learning Part 2-en_US.srt

2.6 KB

2. Visualize Learning Part 2.mp4

12.8 MB

3. Visualize Learning Part 3-en_US.srt

10.6 KB

3. Visualize Learning Part 3.mp4

28.7 MB

4. Visualize Learning Part 4-en_US.srt

7.2 KB

4. Visualize Learning Part 4.mp4

21.1 MB

5. Visualize Learning Part 5-en_US.srt

14.5 KB

5. Visualize Learning Part 5.mp4

75.1 MB

6. Visualize Learning Part 6-en_US.srt

10.2 KB

6. Visualize Learning Part 6.mp4

67.5 MB

7. Neural Networks Playground-en_US.srt

6.9 KB

7. Neural Networks Playground.mp4

34.1 MB

/11. Implementing a Neural Network from Scratch with Numpy/

1. The Dataset and Hyperparameters-en_US.srt

16.0 KB

1. The Dataset and Hyperparameters.mp4

74.0 MB

2. Understanding the Implementation-en_US.srt

11.2 KB

2. Understanding the Implementation.mp4

24.5 MB

3. Forward Propagation-en_US.srt

15.7 KB

3. Forward Propagation.mp4

89.3 MB

4. Loss Function-en_US.srt

21.6 KB

4. Loss Function.mp4

71.8 MB

5. Prediction-en_US.srt

7.1 KB

5. Prediction.mp4

29.1 MB

6. Backpropagation Equations-en_US.srt

16.3 KB

6. Backpropagation Equations.mp4

103.6 MB

7. Backpropagation-en_US.srt

28.2 KB

7. Backpropagation.mp4

155.3 MB

8. Initializing the Network-en_US.srt

8.5 KB

8. Initializing the Network.mp4

61.8 MB

9. Training the Model-en_US.srt

5.4 KB

9. Training the Model.mp4

49.5 MB

Notebook for the following Lecture.html

0.5 KB

/12. Practical Neural Networks in PyTorch - Application 2 Handwritten Digits/

1. Code Details-en_US.srt

2.7 KB

1. Code Details.mp4

33.5 MB

2. Importing and Defining Parameters-en_US.srt

16.3 KB

2. Importing and Defining Parameters.mp4

149.1 MB

3. Defining the Network Class-en_US.srt

12.3 KB

3. Defining the Network Class.mp4

90.1 MB

4. Creating the network class and the network functions-en_US.srt

0.0 KB

4. Creating the network class and the network functions.mp4

58.9 MB

5. Training the Network-en_US.srt

33.3 KB

5. Training the Network.mp4

349.4 MB

6. Testing the Network-en_US.srt

5.8 KB

6. Testing the Network.mp4

49.4 MB

The MNIST Dataset.html

0.4 KB

/13. Convolutional Neural Networks/

1. Prerequisite Filters-en_US.srt

6.5 KB

1. Prerequisite Filters.mp4

38.2 MB

10. Important formulas-en_US.srt

7.0 KB

10. Important formulas.mp4

14.0 MB

11. CNN Characteristics-en_US.srt

11.0 KB

11. CNN Characteristics.mp4

48.1 MB

12. Regularization and Batch Normalization in CNNs-en_US.srt

4.8 KB

12. Regularization and Batch Normalization in CNNs.mp4

19.1 MB

13. DropBlock Dropout in CNNs-en_US.srt

15.8 KB

13. DropBlock Dropout in CNNs.mp4

104.3 MB

14. Softmax with Temperature-en_US.srt

12.9 KB

14. Softmax with Temperature.mp4

28.7 MB

2. Introduction to Convolutional Networks and the need for them-en_US.srt

9.4 KB

2. Introduction to Convolutional Networks and the need for them.mp4

26.3 MB

3. Filters and Features-en_US.srt

12.5 KB

3. Filters and Features.mp4

54.5 MB

4. Convolution over Volume Animation-en_US.srt

4.7 KB

4. Convolution over Volume Animation.mp4

22.3 MB

5. More on Convolutions-en_US.srt

8.9 KB

5. More on Convolutions.mp4

31.4 MB

6. Quiz Solution Discussion-en_US.srt

4.6 KB

6. Quiz Solution Discussion.mp4

6.2 MB

7. A Tool for Convolution Visualization-en_US.srt

6.1 KB

7. A Tool for Convolution Visualization.mp4

29.3 MB

8. Activation, Pooling and FC-en_US.srt

17.3 KB

8. Activation, Pooling and FC.mp4

84.6 MB

9. CNN Visualization-en_US.srt

2.8 KB

9. CNN Visualization.mp4

16.2 MB

Convolution over Volume Animation Resource.html

0.3 KB

/14. Practical Convolutional Networks in PyTorch - Image Classification/

1. Loading and Normalizing the Dataset-en_US.srt

16.3 KB

1. Loading and Normalizing the Dataset.mp4

55.1 MB

10. Classifying your own Handwritten images-en_US.srt

15.7 KB

10. Classifying your own Handwritten images.mp4

58.4 MB

2. Visualizing and Loading the Dataset-en_US.srt

12.7 KB

2. Visualizing and Loading the Dataset.mp4

63.7 MB

3. Building the CNN-en_US.srt

32.6 KB

3. Building the CNN.mp4

263.6 MB

4. Defining the Model-en_US.srt

5.7 KB

4. Defining the Model.mp4

19.6 MB

5. Understanding the Propagation-en_US.srt

7.8 KB

5. Understanding the Propagation.mp4

27.5 MB

6. Training the CNN-en_US.srt

21.3 KB

6. Training the CNN.mp4

137.4 MB

7. Testing the CNN-en_US.srt

9.1 KB

7. Testing the CNN.mp4

37.6 MB

8. Plotting and Putting into Action-en_US.srt

6.5 KB

8. Plotting and Putting into Action.mp4

47.5 MB

9. Predicting an image-en_US.srt

6.5 KB

9. Predicting an image.mp4

18.3 MB

/15. CNN Architectures/

1. CNN Architectures Part 1-en_US.srt

15.6 KB

1. CNN Architectures Part 1.mp4

46.0 MB

2. Residual Networks Part 1-en_US.srt

14.5 KB

2. Residual Networks Part 1.mp4

128.2 MB

3. Residual Networks Part 2-en_US.srt

23.6 KB

3. Residual Networks Part 2.mp4

158.7 MB

4. CNN Architectures Part 2-en_US.srt

4.7 KB

4. CNN Architectures Part 2.mp4

14.0 MB

5. Densely Connected Networks-en_US.srt

18.3 KB

5. Densely Connected Networks.mp4

99.8 MB

6. Squeeze-Excite Networks-en_US.srt

13.5 KB

6. Squeeze-Excite Networks.mp4

41.5 MB

7. Seperable Convolutions-en_US.srt

15.2 KB

7. Seperable Convolutions.mp4

63.4 MB

8. Transfer Learning-en_US.srt

11.8 KB

8. Transfer Learning.mp4

30.7 MB

Note on Residual Networks Implementation.html

0.1 KB

/16. Practical Residual Networks in PyTorch/

1. Practical ResNet Part 1-en_US.srt

16.3 KB

1. Practical ResNet Part 1.mp4

75.0 MB

2. Practical ResNet Part 2-en_US.srt

16.4 KB

2. Practical ResNet Part 2.mp4

89.9 MB

3. Practical ResNet Part 3-en_US.srt

15.9 KB

3. Practical ResNet Part 3.mp4

108.2 MB

4. Practical ResNet Part 4-en_US.srt

17.4 KB

4. Practical ResNet Part 4.mp4

150.2 MB

/17. Transposed Convolutions/

1. Introduction to Transposed Convolutions-en_US.srt

9.2 KB

1. Introduction to Transposed Convolutions.mp4

32.5 MB

2. Convolution Operation as Matrix Multiplication-en_US.srt

11.5 KB

2. Convolution Operation as Matrix Multiplication.mp4

74.4 MB

3. Transposed Convolutions-en_US.srt

8.5 KB

3. Transposed Convolutions.mp4

37.8 MB

/18. Transfer Learning in PyTorch - Image Classification/

1. Data Augmentation-en_US.srt

15.8 KB

1. Data Augmentation.mp4

235.5 MB

2. External URLs.txt

0.1 KB

2. Loading the Dataset-en_US.srt

14.4 KB

2. Loading the Dataset.mp4

186.0 MB

3. Modifying the Network-en_US.srt

11.0 KB

3. Modifying the Network.mp4

101.7 MB

4. Understanding the data-en_US.srt

14.9 KB

4. Understanding the data.mp4

106.7 MB

5. Finetuning the Network-en_US.srt

7.0 KB

5. Finetuning the Network.mp4

52.5 MB

6. Testing and Visualizing the results-en_US.srt

13.3 KB

6. Testing and Visualizing the results.mp4

124.2 MB

[Tutorialsplanet.NET].url

0.1 KB

/19. Convolutional Networks Visualization/

1. Data and the Model-en_US.srt

10.3 KB

1. Data and the Model.mp4

78.0 MB

2. Processing the Model-en_US.srt

18.0 KB

2. Processing the Model.mp4

149.4 MB

3. Visualizing the Feature Maps-en_US.srt

16.8 KB

3. Visualizing the Feature Maps.mp4

139.7 MB

dog.jpg

95.5 KB

imagenet-class-index.json

35.4 KB

/2. Loss Functions/

1. Mean Squared Error (MSE)-en_US.srt

9.4 KB

1. Mean Squared Error (MSE).mp4

20.8 MB

10. Triplet Ranking Loss-en_US.srt

16.8 KB

10. Triplet Ranking Loss.mp4

131.8 MB

2. L1 Loss (MAE)-en_US.srt

11.2 KB

2. L1 Loss (MAE).mp4

81.0 MB

3. Huber Loss-en_US.srt

8.4 KB

3. Huber Loss.mp4

30.0 MB

4. Binary Cross Entropy Loss-en_US.srt

17.6 KB

4. Binary Cross Entropy Loss.mp4

47.1 MB

5. Cross Entropy Loss-en_US.srt

11.0 KB

5. Cross Entropy Loss.mp4

25.9 MB

6. Softmax Function-en_US.srt

10.1 KB

6. Softmax Function.mp4

46.9 MB

7. KL divergence Loss-en_US.srt

9.8 KB

7. KL divergence Loss.mp4

26.6 MB

8. Contrastive Loss-en_US.srt

16.3 KB

8. Contrastive Loss.mp4

65.7 MB

9. Hinge Loss-en_US.srt

16.9 KB

9. Hinge Loss.mp4

70.7 MB

Practical Loss Functions Note.html

0.2 KB

Softmax with Temperature Controlling your distribution.html

0.4 KB

[Tutorialsplanet.NET].url

0.1 KB

/20. YOLO Object Detection (Theory)/

1. YOLO Theory Part 1-en_US.srt

6.9 KB

1. YOLO Theory Part 1.mp4

140.3 MB

10. YOLO Theory Part 10-en_US.srt

2.9 KB

10. YOLO Theory Part 10.mp4

26.5 MB

11. YOLO Theory Part 11-en_US.srt

7.6 KB

11. YOLO Theory Part 11.mp4

55.4 MB

12. YOLO Theory Part 12-en_US.srt

13.6 KB

12. YOLO Theory Part 12.mp4

61.1 MB

2. YOLO Theory Part 2-en_US.srt

16.5 KB

2. YOLO Theory Part 2.mp4

84.6 MB

3. YOLO Theory Part 3-en_US.srt

12.6 KB

3. YOLO Theory Part 3.mp4

129.9 MB

4. YOLO Theory Part 4-en_US.srt

8.9 KB

4. YOLO Theory Part 4.mp4

27.0 MB

5. YOLO Theory Part 5-en_US.srt

10.5 KB

5. YOLO Theory Part 5.mp4

110.1 MB

6. YOLO Theory Part 6-en_US.srt

12.5 KB

6. YOLO Theory Part 6.mp4

129.8 MB

7. YOLO Theory Part 7-en_US.srt

9.0 KB

7. YOLO Theory Part 7.mp4

73.1 MB

8. YOLO Theory Part 8-en_US.srt

7.2 KB

8. YOLO Theory Part 8.mp4

80.9 MB

9. YOLO Theory Part 9-en_US.srt

5.4 KB

9. YOLO Theory Part 9.mp4

18.6 MB

YOLO Code Note.html

1.4 KB

/21. Autoencoders and Variational Autoencoders/

1. Autoencoders-en_US.srt

12.1 KB

1. Autoencoders.mp4

44.1 MB

2. Denoising Autoencoders-en_US.srt

9.5 KB

2. Denoising Autoencoders.mp4

31.5 MB

3. The Problem in Autoencoders-en_US.srt

6.6 KB

3. The Problem in Autoencoders.mp4

14.1 MB

4. Variational Autoencoders-en_US.srt

14.2 KB

4. Variational Autoencoders.mp4

73.6 MB

5. Probability Distributions Recap-en_US.srt

43.5 KB

5. Probability Distributions Recap.mp4

271.9 MB

6. Loss Function Derivation for VAE-en_US.srt

38.2 KB

6. Loss Function Derivation for VAE.mp4

334.7 MB

7. Deep Fake-en_US.srt

10.3 KB

7. Deep Fake.mp4

89.4 MB

/22. Practical Variational Autoencoders in PyTorch/

1. Practical VAE Part 1-en_US.srt

26.1 KB

1. Practical VAE Part 1.mp4

106.1 MB

2. Practical VAE Part 2-en_US.srt

15.0 KB

2. Practical VAE Part 2.mp4

108.8 MB

3. Practical VAE Part 3-en_US.srt

15.7 KB

3. Practical VAE Part 3.mp4

97.7 MB

/23. Neural Style Transfer/

1. NST Theory Part 1-en_US.srt

9.4 KB

1. NST Theory Part 1.mp4

55.1 MB

2. NST Theory Part 2-en_US.srt

8.1 KB

2. NST Theory Part 2.mp4

36.9 MB

3. NST Theory Part 3-en_US.srt

13.8 KB

3. NST Theory Part 3.mp4

72.5 MB

/24. Practical Neural Style Transfer in PyTorch/

1. NST Practical Part 1-en_US.srt

14.3 KB

1. NST Practical Part 1.mp4

66.9 MB

2. NST Practical Part 2-en_US.srt

12.8 KB

2. NST Practical Part 2.mp4

134.1 MB

3. NST Practical Part 3-en_US.srt

14.9 KB

3. NST Practical Part 3.mp4

111.0 MB

4. NST Practical Part 4-en_US.srt

18.9 KB

4. NST Practical Part 4.mp4

137.3 MB

5. Fast Neural Style Transfer-en_US.srt

5.3 KB

5. Fast Neural Style Transfer.mp4

47.0 MB

/25. Recurrent Neural Networks/

1. Why do we need RNNs-en_US.srt

6.8 KB

1. Why do we need RNNs.mp4

19.5 MB

10. CNN-LSTM-en_US.srt

6.5 KB

10. CNN-LSTM.mp4

22.5 MB

2. Vanilla RNNs-en_US.srt

11.1 KB

2. Vanilla RNNs.mp4

54.1 MB

3. Quiz Solution Discussion-en_US.srt

5.2 KB

3. Quiz Solution Discussion.mp4

16.1 MB

4. Backpropagation Through Time-en_US.srt

16.9 KB

4. Backpropagation Through Time.mp4

64.6 MB

5. Stacked RNNs-en_US.srt

3.6 KB

5. Stacked RNNs.mp4

8.1 MB

6. Vanishing and Exploding Gradient Problem-en_US.srt

13.9 KB

6. Vanishing and Exploding Gradient Problem.mp4

70.1 MB

7. LSTMs-en_US.srt

29.1 KB

7. LSTMs.mp4

117.1 MB

8. Bidirectional RNNs-en_US.srt

5.3 KB

8. Bidirectional RNNs.mp4

15.8 MB

9. GRUs-en_US.srt

9.1 KB

9. GRUs.mp4

27.4 MB

[Tutorialsplanet.NET].url

0.1 KB

/26. Word Embeddings/

1. What are Word Embeddings-en_US.srt

12.5 KB

1. What are Word Embeddings.mp4

76.2 MB

2. Visualizing Word Embeddings-en_US.srt

4.4 KB

2. Visualizing Word Embeddings.mp4

12.8 MB

3. Measuring Word Embeddings-en_US.srt

2.6 KB

3. Measuring Word Embeddings.mp4

5.8 MB

4. Word Embeddings Models-en_US.srt

4.3 KB

4. Word Embeddings Models.mp4

11.2 MB

5. Word Embeddings in PyTorch-en_US.srt

8.0 KB

5. Word Embeddings in PyTorch.mp4

55.8 MB

/27. Practical Recurrent Networks in PyTorch/

1. Creating the Dictionary-en_US.srt

7.7 KB

1. Creating the Dictionary.mp4

62.8 MB

2. Processing the Text-en_US.srt

13.7 KB

2. Processing the Text.mp4

113.9 MB

3. Defining and Visualizing the Parameters-en_US.srt

9.8 KB

3. Defining and Visualizing the Parameters.mp4

72.9 MB

4. Creating the Network-en_US.srt

14.5 KB

4. Creating the Network.mp4

117.5 MB

5. Training the Network-en_US.srt

13.6 KB

5. Training the Network.mp4

159.0 MB

6. Generating Text-en_US.srt

16.7 KB

6. Generating Text.mp4

186.5 MB

Download the Dataset.html

0.3 KB

/28. Saving and Loading Models/

1. Saving and Loading Part 1-en_US.srt

19.7 KB

1. Saving and Loading Part 1.mp4

137.0 MB

2. Saving and Loading Part 2-en_US.srt

10.3 KB

2. Saving and Loading Part 2.mp4

101.3 MB

3. Saving and Loading Part 3-en_US.srt

7.7 KB

3. Saving and Loading Part 3.mp4

55.4 MB

/29. Sequence Modelling/

1. Sequence Modeling-en_US.srt

17.7 KB

1. Sequence Modeling.mp4

85.5 MB

2. Image Captioning-en_US.srt

6.8 KB

2. Image Captioning.mp4

36.4 MB

3. Attention Mechanisms-en_US.srt

7.2 KB

3. Attention Mechanisms.mp4

17.3 MB

4. How Attention Mechanisms Work-en_US.srt

15.0 KB

4. How Attention Mechanisms Work.mp4

42.1 MB

/3. Activation Functions/

1. Why we need activation functions-en_US.srt

5.2 KB

1. Why we need activation functions.mp4

23.5 MB

2. Sigmoid Activation-en_US.srt

8.4 KB

2. Sigmoid Activation.mp4

21.1 MB

3. Tanh Activation-en_US.srt

4.2 KB

3. Tanh Activation.mp4

14.5 MB

4. ReLU and PReLU-en_US.srt

9.4 KB

4. ReLU and PReLU.mp4

21.8 MB

5. Exponentially Linear Units (ELU)-en_US.srt

5.0 KB

5. Exponentially Linear Units (ELU).mp4

11.2 MB

6. Gated Linear Units (GLU)-en_US.srt

4.1 KB

6. Gated Linear Units (GLU).mp4

27.8 MB

7. Swish Activation-en_US.srt

5.3 KB

7. Swish Activation.mp4

13.5 MB

8. Mish Activation-en_US.srt

7.7 KB

8. Mish Activation.mp4

40.0 MB

/30. Practical Sequence Modelling in PyTorch Chatbot Application/

1. Introduction-en_US.srt

8.0 KB

1. Introduction.mp4

78.1 MB

2. Understanding the Encoder-en_US.srt

7.9 KB

2. Understanding the Encoder.mp4

97.2 MB

3. Defining the Encoder-en_US.srt

31.7 KB

3. Defining the Encoder.mp4

424.0 MB

4. Understanding Pack Padded Sequence-en_US.srt

10.0 KB

4. Understanding Pack Padded Sequence.mp4

30.6 MB

5. Designing the Attention Model-en_US.srt

20.9 KB

5. Designing the Attention Model.mp4

272.9 MB

6. Designing the Decoder Part 1-en_US.srt

18.5 KB

6. Designing the Decoder Part 1.mp4

146.1 MB

7. Designing the Decoder Part 2-en_US.srt

23.1 KB

7. Designing the Decoder Part 2.mp4

184.7 MB

8. Teacher Forcing-en_US.srt

6.6 KB

8. Teacher Forcing.mp4

22.8 MB

Download the Dataset.html

0.3 KB

/31. Practical Sequence Modelling in PyTorch Image Captioning/

1. Implementation Details-en_US.srt

16.2 KB

1. Implementation Details.mp4

52.8 MB

10. Train Function-en_US.srt

21.0 KB

10. Train Function.mp4

166.6 MB

11. Defining Hyperparameters-en_US.srt

19.0 KB

11. Defining Hyperparameters.mp4

109.9 MB

12. Evaluation Function-en_US.srt

22.2 KB

12. Evaluation Function.mp4

95.0 MB

13. Training-en_US.srt

3.4 KB

13. Training.mp4

13.5 MB

14. Results-en_US.srt

3.8 KB

14. Results.mp4

35.5 MB

2. Utility Functions-en_US.srt

18.6 KB

2. Utility Functions.mp4

43.4 MB

3. Accuracy Calculation-en_US.srt

14.0 KB

3. Accuracy Calculation.mp4

77.7 MB

4. Constructing the Dataset Part 1-en_US.srt

18.7 KB

4. Constructing the Dataset Part 1.mp4

142.7 MB

5. Constructing the Dataset Part 2-en_US.srt

15.9 KB

5. Constructing the Dataset Part 2.mp4

59.7 MB

6. Creating the Encoder-en_US.srt

23.4 KB

6. Creating the Encoder.mp4

89.0 MB

7. Creating the Decoder Part 1-en_US.srt

23.0 KB

7. Creating the Decoder Part 1.mp4

123.9 MB

8. Creating the Decoder Part 2-en_US.srt

15.1 KB

8. Creating the Decoder Part 2.mp4

102.2 MB

9. Creating the Decoder Part 3-en_US.srt

17.5 KB

9. Creating the Decoder Part 3.mp4

137.4 MB

/32. Transformers/

1. Introduction to Transformers-en_US.srt

16.2 KB

1. Introduction to Transformers.mp4

49.0 MB

10. Masked MultiHead Attention-en_US.srt

8.9 KB

10. Masked MultiHead Attention.mp4

28.0 MB

11. MultiHead Attention in Decoder-en_US.srt

3.5 KB

11. MultiHead Attention in Decoder.mp4

11.6 MB

12. Cross Entropy Loss-en_US.srt

16.5 KB

12. Cross Entropy Loss.mp4

34.3 MB

13. KL Divergence Loss-en_US.srt

7.9 KB

13. KL Divergence Loss.mp4

24.7 MB

14. Label Smoothing-en_US.srt

6.1 KB

14. Label Smoothing.mp4

13.9 MB

15. Dropout-en_US.srt

12.3 KB

15. Dropout.mp4

78.9 MB

16. Learning Rate Warmup-en_US.srt

8.8 KB

16. Learning Rate Warmup.mp4

30.5 MB

2. Input Embeddings-en_US.srt

8.7 KB

2. Input Embeddings.mp4

69.0 MB

3. Positional Encoding-en_US.srt

18.5 KB

3. Positional Encoding.mp4

100.6 MB

4. MultiHead Attention Part 1-en_US.srt

13.3 KB

4. MultiHead Attention Part 1.mp4

61.2 MB

5. MultiHead Attention Part 2-en_US.srt

10.7 KB

5. MultiHead Attention Part 2.mp4

48.1 MB

6. Concat and Linear-en_US.srt

4.1 KB

6. Concat and Linear.mp4

10.2 MB

7. Residual Learning-en_US.srt

8.6 KB

7. Residual Learning.mp4

29.4 MB

8. Layer Normalization-en_US.srt

9.6 KB

8. Layer Normalization.mp4

22.8 MB

9. Feed Forward-en_US.srt

4.4 KB

9. Feed Forward.mp4

16.3 MB

SANITY CHECK ON PREVIOUS SECTIONS.html

0.3 KB

[Tutorialsplanet.NET].url

0.1 KB

/33. Build a Chatbot with Transformers/

1. Dataset Preprocessing Part 1-en_US.srt

13.5 KB

1. Dataset Preprocessing Part 1.mp4

87.4 MB

10. MultiHead Attention Implementation Part 3-en_US.srt

16.5 KB

10. MultiHead Attention Implementation Part 3.mp4

129.5 MB

11. Feed Forward Implementation-en_US.srt

4.5 KB

11. Feed Forward Implementation.mp4

45.0 MB

12. Encoder Layer-en_US.srt

10.1 KB

12. Encoder Layer.mp4

90.9 MB

13. Decoder Layer-en_US.srt

6.9 KB

13. Decoder Layer.mp4

65.3 MB

14. Transformer-en_US.srt

15.1 KB

14. Transformer.mp4

122.8 MB

15. AdamWarmup-en_US.srt

9.0 KB

15. AdamWarmup.mp4

78.9 MB

16. Loss with Label Smoothing-en_US.srt

25.4 KB

16. Loss with Label Smoothing.mp4

225.1 MB

17. Defining the Model-en_US.srt

8.6 KB

17. Defining the Model.mp4

45.8 MB

18. Training Function-en_US.srt

14.2 KB

18. Training Function.mp4

105.4 MB

19. Evaluation Function-en_US.srt

21.1 KB

19. Evaluation Function.mp4

115.1 MB

2. Dataset Preprocessing Part 2-en_US.srt

20.4 KB

2. Dataset Preprocessing Part 2.mp4

141.2 MB

20. Main Function and User Evaluation-en_US.srt

12.8 KB

20. Main Function and User Evaluation.mp4

97.8 MB

21. Action-en_US.srt

4.0 KB

21. Action.mp4

33.8 MB

3. Dataset Preprocessing Part 3-en_US.srt

14.2 KB

3. Dataset Preprocessing Part 3.mp4

83.9 MB

4. Dataset Preprocessing Part 4-en_US.srt

5.8 KB

4. Dataset Preprocessing Part 4.mp4

21.3 MB

5. Dataset Preprocessing Part 5-en_US.srt

12.9 KB

5. Dataset Preprocessing Part 5.mp4

96.9 MB

6. Data Loading and Masking-en_US.srt

17.2 KB

6. Data Loading and Masking.mp4

79.5 MB

7. Embeddings-en_US.srt

19.2 KB

7. Embeddings.mp4

85.2 MB

8. MultiHead Attention Implementation Part 1-en_US.srt

8.9 KB

8. MultiHead Attention Implementation Part 1.mp4

63.4 MB

9. MultiHead Attention Implementation Part 2-en_US.srt

10.6 KB

9. MultiHead Attention Implementation Part 2.mp4

53.9 MB

CODE.html

0.3 KB

SANITY CHECK ON PREVIOUS SECTIONS.html

0.3 KB

/34. Universal Transformers/

1. Universal Transformers-en_US.srt

9.5 KB

1. Universal Transformers.mp4

22.9 MB

2. Practical Universal Transformers Modifying the Transformers code-en_US.srt

17.7 KB

2. Practical Universal Transformers Modifying the Transformers code.mp4

168.9 MB

3. Transformers for other tasks-en_US.srt

11.4 KB

3. Transformers for other tasks.mp4

118.3 MB

SANITY CHECK ON PREVIOUS SECTIONS.html

0.3 KB

/35. Google Colab and Gradient Accumulation/

1. Running your models on Google Colab-en_US.srt

10.7 KB

1. Running your models on Google Colab.mp4

34.8 MB

2. Gradient Accumulation-en_US.srt

21.2 KB

2. Gradient Accumulation.mp4

59.6 MB

/36. BERT/

1. What is BERT and its structure-en_US.srt

11.5 KB

1. What is BERT and its structure.mp4

36.4 MB

2. Masked Language Modelling-en_US.srt

7.3 KB

2. Masked Language Modelling.mp4

24.2 MB

3. Next Sentence Prediction-en_US.srt

11.8 KB

3. Next Sentence Prediction.mp4

44.7 MB

4. Fine-tuning BERT-en_US.srt

9.4 KB

4. Fine-tuning BERT.mp4

53.1 MB

5. Exploring Transformers-en_US.srt

20.6 KB

5. Exploring Transformers.mp4

143.2 MB

/37. Vision Transformers/

1. Vision Transformer Part 1-en_US.srt

17.4 KB

1. Vision Transformer Part 1.mp4

89.4 MB

2. Vision Transformer Part 2-en_US.srt

12.1 KB

2. Vision Transformer Part 2.mp4

37.0 MB

3. Vision Transformer Part 3-en_US.srt

15.8 KB

3. Vision Transformer Part 3.mp4

111.6 MB

SANITY CHECK ON PREVIOUS SECTIONS.html

0.3 KB

/38. GPT/

1. GPT Part 1-en_US.srt

14.0 KB

1. GPT Part 1.mp4

93.2 MB

2. GPT Part 2-en_US.srt

12.5 KB

2. GPT Part 2.mp4

47.6 MB

3. Zero-Shot Predictions with GPT-en_US.srt

10.6 KB

3. Zero-Shot Predictions with GPT.mp4

45.5 MB

4. Byte-Pair Encoding-en_US.srt

10.7 KB

4. Byte-Pair Encoding.mp4

41.2 MB

5. Technical Details of GPT-en_US.srt

9.2 KB

5. Technical Details of GPT.mp4

53.9 MB

6. Playing with HuggingFace models-en_US.srt

10.0 KB

6. Playing with HuggingFace models.mp4

31.7 MB

Implementation.html

0.1 KB

/4. Regularization and Normalization/

1. Overfitting-en_US.srt

6.6 KB

1. Overfitting.mp4

27.5 MB

2. L1 and L2 Regularization-en_US.srt

12.1 KB

2. L1 and L2 Regularization.mp4

35.1 MB

3. Dropout-en_US.srt

12.3 KB

3. Dropout.mp4

78.9 MB

4. DropConnect-en_US.srt

2.3 KB

4. DropConnect.mp4

14.9 MB

5. Normalization-en_US.srt

6.2 KB

5. Normalization.mp4

14.2 MB

6. Batch Normalization-en_US.srt

16.3 KB

6. Batch Normalization.mp4

105.2 MB

7. Layer Normalization-en_US.srt

10.3 KB

7. Layer Normalization.mp4

47.7 MB

8. Group Normalization-en_US.srt

8.0 KB

8. Group Normalization.mp4

27.7 MB

DropBlock in CNNs.html

0.3 KB

Note on Weight Decay.html

0.4 KB

/5. Optimization/

1. Batch Gradient Descent-en_US.srt

8.5 KB

1. Batch Gradient Descent.mp4

51.8 MB

10. SWATS - Switching from Adam to SGD-en_US.srt

2.1 KB

10. SWATS - Switching from Adam to SGD.mp4

10.3 MB

11. Weight Decay-en_US.srt

9.5 KB

11. Weight Decay.mp4

79.3 MB

12. Decoupling Weight Decay-en_US.srt

5.9 KB

12. Decoupling Weight Decay.mp4

54.8 MB

13. AMSGrad-en_US.srt

11.9 KB

13. AMSGrad.mp4

89.8 MB

2. Stochastic Gradient Descent-en_US.srt

6.7 KB

2. Stochastic Gradient Descent.mp4

19.0 MB

3. Mini-Batch Gradient Descent-en_US.srt

3.5 KB

3. Mini-Batch Gradient Descent.mp4

7.3 MB

4. Exponentially Weighted Average Intuition-en_US.srt

7.0 KB

4. Exponentially Weighted Average Intuition.mp4

24.0 MB

5. Exponentially Weighted Average Implementation-en_US.srt

11.6 KB

5. Exponentially Weighted Average Implementation.mp4

45.2 MB

6. Bias Correction in Exponentially Weighted Averages-en_US.srt

8.1 KB

6. Bias Correction in Exponentially Weighted Averages.mp4

32.4 MB

7. Momentum-en_US.srt

7.8 KB

7. Momentum.mp4

28.7 MB

8. RMSProp-en_US.srt

15.5 KB

8. RMSProp.mp4

40.9 MB

9. Adam Optimization-en_US.srt

9.5 KB

9. Adam Optimization.mp4

81.5 MB

/6. Hyperparameter Tuning and Learning Rate Scheduling/

1. Introduction to Hyperparameter Tuning and Learning Rate Recap-en_US.srt

6.8 KB

1. Introduction to Hyperparameter Tuning and Learning Rate Recap.mp4

18.5 MB

2. Step Learning Rate Decay-en_US.srt

16.8 KB

2. Step Learning Rate Decay.mp4

65.9 MB

3. Cyclic Learning Rate-en_US.srt

13.3 KB

3. Cyclic Learning Rate.mp4

72.7 MB

4. Cosine Annealing with Warm Restarts-en_US.srt

7.3 KB

4. Cosine Annealing with Warm Restarts.mp4

36.9 MB

5. Batch Size vs Learning Rate-en_US.srt

4.2 KB

5. Batch Size vs Learning Rate.mp4

25.9 MB

/7. Weight Initialization/

1. Normal Distribution-en_US.srt

8.8 KB

1. Normal Distribution.mp4

19.6 MB

2. What happens when all weights are initialized to the same value-en_US.srt

13.0 KB

2. What happens when all weights are initialized to the same value.mp4

62.9 MB

3. Xavier Initialization-en_US.srt

12.9 KB

3. Xavier Initialization.mp4

115.0 MB

4. He Norm Initialization-en_US.srt

5.1 KB

4. He Norm Initialization.mp4

14.0 MB

Practical Weight Initialization Note.html

0.2 KB

/8. Introduction to PyTorch/

1. CODE FOR THIS COURSE-en_US.srt

0.7 KB

1. CODE FOR THIS COURSE.mp4

1.9 MB

10. Weight Initialization in PyTorch-en_US.srt

16.8 KB

10. Weight Initialization in PyTorch.mp4

69.1 MB

2. Computation Graphs and Deep Learning Frameworks-en_US.srt

17.8 KB

2. Computation Graphs and Deep Learning Frameworks.mp4

57.9 MB

3. Installing PyTorch and an Introduction-en_US.srt

14.6 KB

3. Installing PyTorch and an Introduction.mp4

104.1 MB

4. How PyTorch Works-en_US.srt

24.6 KB

4. How PyTorch Works.mp4

154.6 MB

5. Torch Tensors - Part 1-en_US.srt

15.4 KB

5. Torch Tensors - Part 1.mp4

91.3 MB

6. Torch Tensors - Part 2-en_US.srt

13.4 KB

6. Torch Tensors - Part 2.mp4

71.2 MB

7. Numpy Bridge, Tensor Concatenation and Adding Dimensions-en_US.srt

15.2 KB

7. Numpy Bridge, Tensor Concatenation and Adding Dimensions.mp4

78.7 MB

8. Automatic Differentiation-en_US.srt

12.2 KB

8. Automatic Differentiation.mp4

80.1 MB

9. Loss Functions in PyTorch-en_US.srt

37.7 KB

9. Loss Functions in PyTorch.mp4

233.6 MB

[Tutorialsplanet.NET].url

0.1 KB

/9. Practical Neural Networks in PyTorch - Application 1 Diabetes/

1. Part 1 Data Preprocessing-en_US.srt

19.0 KB

1. Part 1 Data Preprocessing.mp4

129.8 MB

2. Part 2 Data Normalization-en_US.srt

10.5 KB

2. Part 2 Data Normalization.mp4

58.1 MB

3. Part 3 Creating and Loading the Dataset-en_US.srt

9.7 KB

3. Part 3 Creating and Loading the Dataset.mp4

69.4 MB

4. Part 4 Building the Network-en_US.srt

23.0 KB

4. Part 4 Building the Network.mp4

178.8 MB

5. Part 5 Training the Network-en_US.srt

23.7 KB

5. Part 5 Training the Network.mp4

163.8 MB

Download the Dataset.html

0.3 KB

/

[Tutorialsplanet.NET].url

0.1 KB

 

Total files 584


Copyright © 2024 FileMood.com