FileMood

Download UDEMI_Taming Big Data with MapReduce and Hadoop

UDEMI Taming Big Data with MapReduce and Hadoop

Name

UDEMI_Taming Big Data with MapReduce and Hadoop

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

3.4 GB

Total Files

90

Hash

361D863290E1EA2B5673BF4DD77EF053DF8D6027

/1_-_Introduction/

1_-_Introduction.mp4

34.2 MB

2_-_How_to_Use_This_Course.mp4

32.6 MB

/2_-_Getting_Started/

3.1_-_Enthought_Canopy_website.txt

0.0 KB

3_-_Installing_Enthought_Canopy.mp4

50.8 MB

4_-_Installing_MRJob.mp4

21.7 MB

5_-_Downloading_the_MovieLens_Data_Set.mp4

27.9 MB

6_-_Run_Your_First_MapReduce_Job.mp4

40.3 MB

/3_-_Understanding_MapReduce/

10_-_Average_Friends_by_Age_Example_-_Part_1.mp4

12.7 MB

11.1_-_Friends_By_Age_.py

0.5 KB

11.2_-_Data_for_FriendsByAge.py.txt

0.0 KB

11_-_Average_Friends_by_Age_Example_-_Part_2.mp4

35.9 MB

12.1_-_Min_Temperatures_.py

0.6 KB

12_-_Minimum_Temperature_By_Location_Example.mp4

41.8 MB

13.1_-_Max_Temperatures_.py

0.6 KB

13.2_-_Temperature_data_file.txt

0.0 KB

13_-_Maximum_Temperature_By_Location_Example.mp4

19.4 MB

14.1_-_Word_Frequency_.py

0.3 KB

14_-_Word_Frequency_in_a_Book_Example.mp4

20.6 MB

15.1_-_Word_Frequency_Better_.py

0.4 KB

15_-_Making_the_Word_Frequency_Mapper_Better_with_Regular_Expressions.mp4

18.5 MB

16.1_-_Word_Frequency_Sorted_.py

1.0 KB

16.2_-_Book.txt

264.9 KB

16_-_Sorting_the_Word_Frequency_Results_Using_Multi-Stage_MapReduce_Jobs.mp4

43.1 MB

17_-_Activity_-_Design_a_Mapper_and_Reducer_for_Total_Spent_by_Customer.mp4

19.1 MB

18_-_Activity_-_Write_Code_for_Total_Spent_by_Customer.mp4

15.6 MB

19.1_-_Spend_By_Customer_.py

0.4 KB

19_-_Compare_Your_Code_to_Mine._Activity_-_Sort_Results_by_Amount_Spent.mp4

34.1 MB

20.1_-_Spend_By_Customer_Sorted_.py

1.0 KB

20.2_-_Customer_Orders_Data_File.txt

0.1 KB

20_-_Compare_your_Code_to_Mine_for_Sorted_Results..mp4

19.8 MB

21.1_-_Word_Frequency_With_Combiner_.py

0.4 KB

21_-_Combiners.mp4

54.7 MB

7_-_MapReduce_Basic_Concepts.mp4

22.6 MB

8.1_-_Rating_Counter_.py

0.3 KB

8_-_Walkthrough_of_Rating_Histogram_Code.mp4

32.7 MB

9_-_Understanding_How_MapReduce_Scales_Distributed_Computing.mp4

18.9 MB

/4_-_Advanced_MapReduce_Examples/

22.1_-_Most_Popular_Movie_.py

0.7 KB

22_-_Example_-_Most_Popular_Movie.mp4

29.6 MB

23.1_-_Most_Popular_Movie_Nicer_.py

1.2 KB

23_-_Including_Ancillary_Lookup_Data_in_the_Example.mp4

47.6 MB

24_-_Example_-_Most_Popular_Superhero_Part_1.mp4

18.0 MB

25.1_-_Marvel_Graph.txt

1.7 MB

25.2_-_Marvel_Names.txt

351.8 KB

25.3_-_Most_Popular_Superhero_.py

1.5 KB

25_-_Example_-_Most_Popular_Superhero_Part_2.mp4

33.9 MB

26_-_Example_-_Degrees_of_Separation_-_Concepts.mp4

34.1 MB

27.1_-_Process_Marvel_.py

1.0 KB

27_-_Degrees_of_Separation_-_Preprocessing_the_Data.mp4

37.0 MB

28_-_Degrees_of_Separation_-_Code_Walkthrough.mp4

33.5 MB

29.1_-_BFS_Iteration.py

2.8 KB

29_-_Degrees_of_Separation_-_Running_and_Analyzing_the_Results.mp4

41.2 MB

30_-_Example_-_Similar_Movies_Based_on_Ratings_-_Concepts.mp4

27.4 MB

31_-_Similar_Movies_-_Code_Walkthrough.mp4

42.8 MB

32.2_-_MovieLens_Data_Website.txt

0.0 KB

32_-_Similar_Movies_-_Running_and_Analyzing_the_Results.mp4

71.1 MB

33_-_Learning_Activity_-_Improving_our_Movie_Similarities_MapReduce_Job.mp4

26.1 MB

/5_-_Using_Hadoop_and_Elastic_MapReduce/

34.1_-_Hadoop_website.txt

0.0 KB

34_-_Fundamental_Concepts_of_Hadoop.mp4

32.2 MB

35_-_The_Hadoop_Distributed_File_System_HDFS_.mp4

11.1 MB

36.1_-_YARN_website.txt

0.1 KB

36_-_Apache_YARN.mp4

21.2 MB

37_-_Hadoop_Streaming_-_How_Hadoop_Runs_your_Python_Code.mp4

21.3 MB

38.1_-_Amazon_Web_Services_Homepage.txt

0.0 KB

38_-_Setting_Up_Your_Amazon_Elastic_MapReduce_Account.mp4

33.1 MB

39_-_Linking_Your_EMR_Account_with_MRJob.mp4

14.7 MB

40_-_Exercise_-_Run_Movie_Recommendations_on_Elastic_MapReduce.mp4

27.2 MB

41_-_Analyze_the_Results_of_Your_EMR_Job.mp4

26.4 MB

/6_-_Advanced_Hadoop_and_EMR/

42_-_Distributed_Computing_Fundamentals.mp4

17.5 MB

43.1_-_Movie_Similarities_.py

4.5 KB

43_-_Activity_-_Running_Movie_Similarities_on_Four_Machines.mp4

27.7 MB

44_-_Analyzing_the_Results_of_the_4-Machine_Job.mp4

69.1 MB

45_-_Troubleshooting_Hadoop_Jobs_with_EMR_and_MRJob_Part_1.mp4

24.4 MB

46.1_-_MRJob_EMR_Documentation.txt

0.1 KB

46_-_Troubleshooting_Hadoop_Jobs_Part_2.mp4

64.8 MB

47_-_Analyzing_One_Million_Movie_Ratings_Across_16_Machines_Part_1.mp4

33.6 MB

48.1_-_Movie_Similarities_Large_.py

4.4 KB

48_-_Analyzing_One_Million_Movie_Ratings_Across_16_Machines_Part_2.mp4

54.8 MB

/7_-_Other_Hadoop_Technologies/

49.1_-_Hive_Website.txt

0.0 KB

49_-_Introducing_Apache_Hive.mp4

16.4 MB

50.1_-_Pig_Website.txt

0.0 KB

50_-_Introducing_Apache_Pig.mp4

23.8 MB

51.1_-_Spark_website.txt

0.0 KB

51_-_Apache_Spark_-_Concepts.mp4

32.7 MB

52.1_-_AWS_Spark_on_EMR_blog_entry.txt

0.1 KB

52.2_-_Scala_source_code_for_the_flights_example.txt

0.1 KB

52_-_Spark_Example_-_Part_1.mp4

67.7 MB

53_-_Spark_Example_-_Part_2.mp4

18.1 MB

54_-_Congratulations_.mp4

13.9 MB

/All Files - tamingBigdata/

0.0 KB

/

keiso_utbigdwmh.iso

1.7 GB

 

Total files 90


Copyright © 2025 FileMood.com