FileMood

Download Udemy - Case Studies in Data Mining with R

Udemy Case Studies in Data Mining with

Name

Udemy - Case Studies in Data Mining with R

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

7.7 GB

Total Files

130

Hash

D4460CC83BB95B053D06D53A6E360247E38875DC

/12 Prediction Tasks and Models/

009 The Prediction Tasks.mp4

48.2 MB

001 Prelude to Modeling Stock Market Indices.mp4

19.6 MB

006 Random Forests Review.mp4

47.2 MB

007 Create Initial Model part 1.mp4

67.1 MB

005 Decision Trees part 4.mp4

48.8 MB

002 Decision Trees as Applicable to Case Study Tasks.mp4

49.1 MB

010 Precision and Recall and Confusion Matrices.mp4

50.2 MB

011 Neural Network Prediction Technique part 1.mp4

75.6 MB

003 Decision Trees part 2.mp4

63.6 MB

004 Decision Trees part 3.mp4

67.6 MB

008 Create Initial Model part 2.mp4

79.2 MB

012 Neural Network Prediction Technique part 2.mp4

68.0 MB

/13 Prediction Models and Support Vector Machines SVMs/

004 SVMs Applied to Stock Market Case.mp4

54.0 MB

006 Multivariate Adaptive Regressive Splines.mp4

53.3 MB

008 Two Strategies.mp4

49.7 MB

003 Review Support Vector Machines SVMs using Weather Data part 3.mp4

38.0 MB

007 How Will the Predictions be Used .mp4

52.1 MB

002 Review Support Vector Machines SVMs using Weather Data part 2.mp4

49.9 MB

009 Writing a Simulated Trader Function part 1.mp4

53.0 MB

005 Kernel Functions.mp4

42.5 MB

001 Review Support Vector Machines SVMs using Weather Data part 1.mp4

45.4 MB

011 Evaluating our Simulated Trades.mp4

47.8 MB

010 Writing a Simulated Trader Function part 2.mp4

42.7 MB

/03 Introduction to Predicting Algae Blooms/

001 Predicting Algae Blooms.mp4

74.4 MB

009 Imputation Replace Missing Values through Correlation.mp4

89.9 MB

006 Imputation Dealing with Unknown or Missing Values.mp4

84.0 MB

007 Imputation Removing Rows with Missing Values.mp4

60.2 MB

008 Imputation Replace Missing Values with Central Measures.mp4

68.8 MB

005 Data Visualization Conditioning Plots.mp4

63.5 MB

003 Data Visualization and Summarization Histograms.mp4

66.5 MB

002 Visualizing other Imputations with Lattice Plots.mp4

66.9 MB

004 Data Visualization Boxplot and Identity Plot.mp4

50.4 MB

/07 Pre-Processing the Data to Apply Methodology/

006 Semi-Supervised Techniques.mp4

50.1 MB

005 Defining Data Mining Tasks.mp4

85.6 MB

008 Lift Charts and Precision Recall Curves.mp4

91.3 MB

004 Pre-Processing the Data part 3.mp4

96.2 MB

003 Pre-Processing the Data part 2.mp4

59.0 MB

002 Pre-Processing the Data part 1.mp4

66.1 MB

007 Precision and Recall.mp4

57.2 MB

001 Review the Data and the Focus of the Fraudulent Transactions Case.mp4

82.9 MB

/01 A Brief Introduction to R and RStudio using Scripts/

001 Course Overview.mp4

8.2 MB

013 Data Structures Dataframes part 2.mp4

59.8 MB

014 Creating New Functions.mp4

73.1 MB

005 Factors part 1.mp4

42.9 MB

011 Data Structures Lists.mp4

64.8 MB

009 Data Structures Matrices and Arrays part 1.mp4

44.9 MB

010 Data Structures Matrices and Arrays part 2.mp4

41.4 MB

007 Generating Sequences.mp4

88.6 MB

004 Data Structures Vectors part 2.mp4

50.1 MB

002 Introduction to R for Data Mining.mp4

92.2 MB

012 Data Structures Dataframes part 1.mp4

51.7 MB

006 Factors part 2.mp4

54.4 MB

008 Indexing aka Subscripting or Subsetting.mp4

43.2 MB

003 Data Structures Vectors part 1.mp4

45.9 MB

/06 Examine the Data in the Fraudulent Transactions Case Study/

002 Fraudulent Case Study Introduction.mp4

11.7 MB

005 Continue Exploring the Data.mp4

51.7 MB

001 Exercise Solution from Evaluating and Selecting Models.mp4

20.5 MB

004 Exploring the Data with Eye toward Missingness.mp4

66.9 MB

003 Prelude to Exploring the Data.mp4

20.4 MB

/05 Evaluating and Selecting Models/

004 Setting up K-Fold Evaluation part 2.mp4

57.5 MB

003 Setting up K-Fold Evaluation part 1.mp4

75.7 MB

008 Predicting from the Models.mp4

78.7 MB

009 Comparing the Predictions.mp4

70.2 MB

007 Finish Evaluating Models.mp4

68.9 MB

001 Alternative Model Evaluation Criteria.mp4

79.8 MB

006 Best Model part 2.mp4

58.3 MB

002 Introduction to K-Fold Cross-Validation.mp4

69.2 MB

005 Best Model part 1.mp4

46.6 MB

/08 Methodology to Find Outliers Fraudulent Transactions/

004 Cumulative Recall Chart.mp4

54.9 MB

009 Experimental Methodology to find Outliers part 4.mp4

67.0 MB

001 Exercise from Previous Session.mp4

13.4 MB

003 Review Lift Charts and Precision Recall Curves.mp4

51.7 MB

007 Experimental Methodology to find Outliers part 2.mp4

74.1 MB

005 Creating More Functions for the Experimental Methodology.mp4

39.8 MB

002 Review Precision and Recall.mp4

50.5 MB

006 Experimental Methodology to find Outliers part 1.mp4

60.3 MB

010 Experimental Methodology to find Outliers part 5.mp4

35.0 MB

008 Experimental Methodology to find Outliers part 3.mp4

70.8 MB

/02 Inputting and Outputting Data and Text/

005 Example Program powers.R.mp4

50.7 MB

002 Using the scan Function for Input part 2.mp4

25.1 MB

001 Using the scan Function for Input part 1.mp4

26.3 MB

003 Using readline, cat and print Functions.mp4

46.1 MB

008 Reading and Writing Files part 2.mp4

62.1 MB

004 Using readLines Function and Text Data.mp4

61.3 MB

006 Example Program quad2b.R.mp4

50.7 MB

007 Reading and Writing Files part 1.mp4

23.7 MB

/10 Sidebar on Boosting/

004 Replicating Adaboost using Rpart part 2.mp4

87.6 MB

006 Boosting Exercise.mp4

47.0 MB

002 Boosting Demo Basics using R.mp4

54.4 MB

003 Replicating Adaboost using Rpart Recursive Partitioning Package.mp4

76.6 MB

001 Introduction to Boosting from Rattle course.mp4

56.9 MB

005 Boosting Extensions and Variants.mp4

89.0 MB

/15 Wrap Up Stock Market Case Study/

003 Last Session Wrap-Up part 2.mp4

52.5 MB

001 Prologue to Last Session Wrap-Up.mp4

72.8 MB

002 Last Session Wrap-Up part 1.mp4

63.2 MB

/11 Introduction to Stock Market Prediction Case Study/

004 Accessing the Data part 1.mp4

55.9 MB

010 Defining the Prediction Tasks part 5.mp4

44.8 MB

003 Case Study Background and Data part 2.mp4

71.7 MB

002 Case Study Background and Data part 1.mp4

73.3 MB

001 Introduction to Stock Market Case Study and Materials.mp4

15.7 MB

005 Accessing the Data part 2.mp4

45.3 MB

007 Defining the Prediction Tasks part 2.mp4

79.0 MB

009 Defining the Prediction Tasks part 4.mp4

45.9 MB

006 Defining the Prediction Tasks part 1.mp4

66.2 MB

008 Defining the Prediction Tasks part 3.mp4

62.7 MB

/04 Obtaining Prediction Models/

003 Examine Alternative Regression Models.mp4

110.1 MB

005 Strategy for Pruning Trees.mp4

68.0 MB

002 Creating Prediction Models.mp4

112.0 MB

001 Read in Data Files.mp4

81.8 MB

004 Regression Trees.mp4

100.6 MB

/09 The Data Mining Tasks to Find the Fraudulent Transactions/

003 Review of Fraud Case part 3.mp4

57.9 MB

001 Review of Fraud Case part 1.mp4

61.6 MB

005 Local Outlier Factors.mp4

70.9 MB

004 Baseline Boxplot Rule.mp4

40.4 MB

009 SMOTE and Naive Bayes part 2.mp4

54.1 MB

007 Supervised and Unsupervised Approaches.mp4

77.7 MB

002 Review of Fraud Case part 2.mp4

59.5 MB

008 SMOTE and Naive Bayes part 1.mp4

64.4 MB

006 Plotting Everything.mp4

52.2 MB

/14 Model Evaluation and Selection/

001 Quick Review of Case Study Support Vector Machines SVMs.mp4

58.7 MB

010 Continue Evaluating part 2.mp4

65.8 MB

005 So What Approach is Recommended .mp4

49.8 MB

004 Why You Cannot Randomly Resample Records.mp4

46.9 MB

011 Continue Evaluating part 3.mp4

57.0 MB

003 Evaluating Policy One and Policy Two.mp4

51.3 MB

006 Experimental Model Comparisons part 1.mp4

59.9 MB

008 Set Up Ranksystems.mp4

82.1 MB

002 Begin Evaluating Models.mp4

75.3 MB

009 Continue Evaluating part 1.mp4

58.5 MB

007 Experimental Model Comparisons part 2.mp4

65.8 MB

 

Total files 130


Copyright © 2025 FileMood.com