FileMood

Download Udemy - Machine Learning A-Z - AI, Python

Udemy Machine Learning AI Python

Name

Udemy - Machine Learning A-Z - AI, Python

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

18.3 GB

Total Files

433

Last Seen

2025-09-07 00:12

Hash

C11E94CDF0C4F90A7D3BED4A37350D97DF002EAA

/41 - Kernel PCA/

002 Implementing Kernel PCA for Non-Linear Data Step-by-Step Guide.mp4

419.0 MB

001 Kernel PCA in Python Improving Classification Accuracy with Feature Extraction.mp4

48.6 MB

/01 - Welcome to the course! Here we will help you get started in the best conditions/

001 Welcome Challenge!.html

7.8 KB

002 Get Excited about ML Predict Car Purchases with Python & Scikit-learn in 5 mins.mp4

53.2 MB

003 Get all the Datasets, Codes and Slides here.html

2.7 KB

004 How to Use Google Colab & Machine Learning Course Folder.mp4

40.1 MB

005 Getting Started with R Programming Install R and RStudio on Windows & Mac.mp4

55.2 MB

006 EXTRA Use ChatGPT to Boost your ML Skills.html

3.3 KB

/02 - -------------------- Part 1 Data Preprocessing --------------------/

001 Welcome to Part 1 - Data Preprocessing.html

2.8 KB

002 Machine Learning Workflow Importing, Modeling, and Evaluating Your ML Model.mp4

8.4 MB

003 Data Preprocessing Importance of Training-Test Split in ML Model Evaluation.mp4

8.3 MB

004 Feature Scaling in Machine Learning Normalization vs Standardization Explained.mp4

19.0 MB

/03 - Data Preprocessing in Python/

001 Step 1 - Data Preprocessing in Python Preparing Your Dataset for ML Models.mp4

16.2 MB

002 Step 2 - Data Preprocessing Techniques From Raw Data to ML-Ready Datasets.mp4

56.1 MB

003 Machine Learning Toolkit Importing NumPy, Matplotlib, and Pandas Libraries.mp4

11.7 MB

004 Step 1 - Machine Learning Basics Importing Datasets Using Pandas read_csv().mp4

16.6 MB

005 Step 2 - Using Pandas iloc for Feature Selection in ML Data Preprocessing.mp4

15.2 MB

006 Step 3 - Preprocessing Data Building X and Y Vectors for ML Model Training.mp4

21.8 MB

007 For Python learners, summary of Object-oriented programming classes & objects.html

3.9 KB

008 Coding Exercise 1 Importing and Preprocessing a Dataset for Machine Learning.html

10.8 KB

009 Step 1 - Using Scikit-Learn to Replace Missing Values in Machine Learning.mp4

25.4 MB

010 Step 2 - Imputing Missing Data in Python SimpleImputer and Numerical Columns.mp4

47.9 MB

011 Coding Exercise 2 Handling Missing Data in a Dataset for Machine Learning.html

33.5 KB

012 Step 1 - One-Hot Encoding Transforming Categorical Features for ML Algorithms.mp4

15.1 MB

013 Step 2 - Handling Categorical Data One-Hot Encoding with ColumnTransformer.mp4

32.1 MB

014 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.mp4

22.7 MB

015 Coding Exercise 3 Encoding Categorical Data for Machine Learning.html

23.3 KB

016 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4

15.9 MB

017 Step 2 - Preparing Data Creating Training and Test Sets in Python for ML Models.mp4

21.7 MB

018 Step 3 - Splitting Data into Training and Test Sets Best Practices in Python.mp4

18.4 MB

019 Coding Exercise 4 Dataset Splitting and Feature Scaling.html

10.6 KB

020 Step 1 - Feature Scaling in ML Why It's Crucial for Data Preprocessing.mp4

20.0 MB

021 Step 2 - How to Scale Numeric Features in Python for ML Preprocessing.mp4

22.0 MB

022 Step 3 - Implementing Feature Scaling Fit and Transform Methods Explained.mp4

17.7 MB

023 Step 4 - Applying the Same Scaler to Training and Test Sets in Python.mp4

26.2 MB

024 Coding exercise 5 Feature scaling for Machine Learning.html

94.0 KB

/04 - Data Preprocessing in R/

001 Data Preprocessing for Beginners Preparing Your Dataset for Machine Learning.mp4

6.9 MB

002 Data Preprocessing Tutorial Understanding Independent vs Dependent Variables.mp4

10.0 MB

003 R Tutorial Importing and Viewing Datasets for Data Preprocessing.mp4

11.9 MB

004 How to Handle Missing Values in R Data Preprocessing for Machine Learning.mp4

34.9 MB

005 Using R's Factor Function to Handle Categorical Variables in Data Analysis.mp4

46.2 MB

006 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4

27.7 MB

007 Step 2 - Preparing Data Creating Training and Test Sets in R for ML Models.mp4

34.1 MB

008 Feature Scaling in ML Step 1 Why It's Crucial for Data Preprocessing.mp4

33.8 MB

009 How to Scale Numeric Features in R for Machine Learning Preprocessing - Step 2.mp4

64.2 MB

010 Essential Steps in Data Preprocessing Preparing Your Dataset for ML Models.mp4

39.9 MB

011 Data Preprocessing Quiz.html

21.4 KB

/05 - -------------------- Part 2 Regression --------------------/

001 Welcome to Part 2 - Regression.html

3.1 KB

/06 - Simple Linear Regression/

001 Simple Linear Regression Understanding the Equation and Potato Yield Prediction.mp4

7.1 MB

002 How to Find the Best Fit Line Understanding Ordinary Least Squares Regression.mp4

13.3 MB

003 Step 1a - Mastering Simple Linear Regression Key Concepts and Implementation.mp4

12.6 MB

004 Step 1b Data Preprocessing for Linear Regression Import & Split Data in Python.mp4

18.8 MB

005 Step 2a - Building a Simple Linear Regression Model with Scikit-learn in Python.mp4

13.0 MB

006 Step 2b - Machine Learning Basics Training a Linear Regression Model in Python.mp4

16.5 MB

007 Step 3 - Using Scikit-Learn's Predict Method for Linear Regression in Python.mp4

35.5 MB

008 Step 4a - Linear Regression Plotting Real vs Predicted Salaries Visualization.mp4

28.1 MB

009 Step 4b - Evaluating Linear Regression Model Performance on Test Data.mp4

30.9 MB

010 Simple Linear Regression in Python - Additional Lecture.html

3.5 KB

011 Step 1 - Data Preprocessing in R Preparing for Linear Regression Modeling.mp4

19.4 MB

012 Step 2 - Fitting Simple Linear Regression in R LM Function and Model Summary.mp4

45.4 MB

013 Step 3 - How to Use predict() Function in R for Linear Regression Analysis.mp4

27.3 MB

014 Step 4a - Plotting Linear Regression Data in R ggplot2 Step-by-Step Guide.mp4

52.7 MB

015 Step 4b - Creating a Scatter Plot with Regression Line in R Using ggplot2.mp4

36.1 MB

016 Step 4c - Comparing Training vs Test Set Predictions in Linear Regression.mp4

25.8 MB

017 Simple Linear Regression Quiz.html

21.0 KB

/07 - Multiple Linear Regression/

001 Startup Success Prediction Regression Model for VC Fund Decision-Making.mp4

54.3 MB

002 Multiple Linear Regression Independent Variables & Prediction Models.mp4

12.4 MB

003 Download-the-PDF.url

0.1 KB

003 Understanding Linear Regression Assumptions Linearity, Homoscedasticity & More.mp4

25.8 MB

004 How to Handle Categorical Variables in Linear Regression Models.mp4

38.8 MB

005 Multicollinearity in Regression Understanding the Dummy Variable Trap.mp4

25.8 MB

006 Understanding P-Values and Statistical Significance in Hypothesis Testing.mp4

36.1 MB

007 Backward Elimination Building Robust Multiple Linear Regression Models.mp4

51.0 MB

008 Step 1a - Hands-On Data Preprocessing for Multiple Linear Regression in Python.mp4

31.0 MB

009 Step 1b - Hands-On Guide Implementing Multiple Linear Regression in Python.mp4

19.4 MB

010 Step 2a - Hands-on Multiple Linear Regression Preparing Data in Python.mp4

46.6 MB

011 Step 2b - Multiple Linear Regression in Python Preparing Your Dataset.mp4

62.0 MB

012 Step 3a - Scikit-learn for Multiple Linear Regression Efficient Model Building.mp4

22.9 MB

013 Step 3b - Scikit-Learn Building & Training Multiple Linear Regression Models.mp4

24.2 MB

014 Step 4a Comparing Real vs Predicted Profits in Linear Regression - Hands-on Gui.mp4

26.6 MB

015 Step 4b - ML in Python Evaluating Multiple Linear Regression Accuracy.mp4

23.0 MB

016 Multiple Linear Regression in Python - Backward Elimination.html

5.9 KB

017 Multiple Linear Regression in Python - EXTRA CONTENT.html

3.5 KB

018 Step 1a - Data Preprocessing for MLR Handling Categorical Data.mp4

18.3 MB

019 Step 1b - Preparing Datasets for Multiple Linear Regression in R.mp4

25.7 MB

020 Step 2a - Multiple Linear Regression in R Building & Interpreting the Regressor.mp4

48.0 MB

021 Step 2b Statistical Significance - P-values & Stars in Regression.mp4

31.5 MB

022 Step 3 - How to Use predict() Function in R for Multiple Linear Regression.mp4

33.7 MB

023 Optimizing Multiple Regression Models Backward Elimination Technique in R.mp4

137.1 MB

024 Mastering Feature Selection Backward Elimination in R for Linear Regression.mp4

59.5 MB

025 Multiple Linear Regression in R - Automatic Backward Elimination.html

3.1 KB

026 Multiple Linear Regression Quiz.html

21.1 KB

external-links.txt

0.1 KB

/08 - Polynomial Regression/

001 Understanding Polynomial Linear Regression Applications and Examples.mp4

14.6 MB

002 Step 1a - Building a Polynomial Regression Model for Salary Prediction in Python.mp4

11.2 MB

003 Step 1b - Setting Up Data for Linear vs Polynomial Regression Comparison.mp4

30.6 MB

004 Step 2a Linear to Polynomial Regression - Preparing Data for Advanced Models.mp4

26.4 MB

005 Step 2b - Transforming Linear to Polynomial Regression A Step-by-Step Guide.mp4

29.8 MB

006 Step 3a - Plotting Real vs Predicted Salaries Linear Regression Visualization.mp4

26.6 MB

007 Step 3b - Polynomial vs Linear Regression Better Fit with Higher Degrees.mp4

25.3 MB

008 Step 4a Predicting Salaries - Linear Regression in Python (Array Input Guide).mp4

17.6 MB

009 Step 4b Python Polynomial Regression - Predicting Salaries Accurately.mp4

13.7 MB

010 Step 1a - Implementing Polynomial Regression in R HR Salary Analysis Case Study.mp4

13.3 MB

011 Step 1b - ML Fundamentals Preparing Data for Polynomial Regression.mp4

22.8 MB

012 Step 2a - Building Linear & Polynomial Regression Models in R A Comparison.mp4

26.0 MB

013 Step 2b - Building a Polynomial Regression Model Adding Squared & Cubed Terms.mp4

42.8 MB

014 Step 3a Visualizing Regression Results - Creating Scatter Plots with ggplot2 in.mp4

36.2 MB

015 Step 3b Visualizing Linear Regression - Plotting Predictions vs Observations.mp4

33.1 MB

016 Step 3c - Polynomial Regression Curve Fitting for Better Predictions.mp4

20.8 MB

017 Step 4a - How to Make Single Predictions Using Polynomial Regression in R.mp4

25.6 MB

018 Step 4b - Predicting Salaries with Polynomial Regression A Practical Example.mp4

24.3 MB

019 Step 1 - Building a Reusable Framework for Nonlinear Regression Analysis in R.mp4

35.0 MB

020 Step 2 - Mastering Regression Model Visualization Increasing Data Resolution.mp4

22.3 MB

021 Polynomial Regression Quiz.html

21.0 KB

/09 - Support Vector Regression (SVR)/

001 How Does Support Vector Regression (SVR) Differ from Linear Regression.mp4

41.2 MB

002 RBF Kernel SVR From Linear to Non-Linear Support Vector Regression.mp4

22.2 MB

003 Step 1a - SVR Model Training Feature Scaling and Dataset Preparation in Python.mp4

18.5 MB

004 Step 1b - SVR in Python Importing Libraries and Dataset for Machine Learning.mp4

14.9 MB

005 Step 2a - Mastering Feature Scaling for Support Vector Regression in Python.mp4

27.8 MB

006 Step 2b Reshaping Data for SVR - Preparing Y Vector for Feature Scaling (Python.mp4

23.9 MB

007 Step 2c SVR Data Prep - Scaling X & Y Independently with StandardScaler.mp4

13.6 MB

008 Step 3 SVM Regression Creating & Training SVR Model with RBF Kernel in Python.mp4

44.3 MB

009 Step 4 - SVR Model Prediction Handling Scaled Data and Inverse Transformation.mp4

17.1 MB

010 Step 5a - How to Plot Support Vector Regression (SVR) Models Step-by-Step Guide.mp4

18.4 MB

011 Step 5b - SVR Scaling & Inverse Transformation in Python.mp4

20.7 MB

012 Step 1 - SVR Tutorial Creating a Support Vector Machine Regressor in R.mp4

101.2 MB

013 Step 2 - Support Vector Regression Building a Predictive Model in Python.mp4

21.9 MB

014 SVR Quiz.html

20.9 KB

/10 - Decision Tree Regression/

001 How to Build a Regression Tree Step-by-Step Guide for Machine Learning.mp4

31.4 MB

002 Step 1a - Decision Tree Regression Building a Model without Feature Scaling.mp4

14.4 MB

003 Step 1b Uploading & Preprocessing Data for Decision Tree Regression in Python.mp4

17.7 MB

004 Step 2 - Implementing DecisionTreeRegressor A Step-by-Step Guide in Python.mp4

18.9 MB

005 Step 3 - Implementing Decision Tree Regression in Python Making Predictions.mp4

13.6 MB

006 Step 4 - Visualizing Decision Tree Regression High-Resolution Results.mp4

25.7 MB

007 Step 1 - Creating a Decision Tree Regressor Using rpart Function in R.mp4

28.3 MB

008 Step 2 - Decision Tree Regression Fixing Splits with rpart Control Parameter.mp4

39.9 MB

009 Step 3 Non-Continuous Regression - Decision Tree Visualization Challenges.mp4

16.0 MB

010 Step 4 - Visualizing Decision Tree Understanding Intervals and Predictions.mp4

19.3 MB

011 Decision Tree Regression Quiz.html

20.7 KB

/11 - Random Forest Regression/

001 Understanding Random Forest Algorithm Intuition and Application in ML.mp4

56.7 MB

002 Step 1 - Building a Random Forest Regression Model with Python and Scikit-Learn.mp4

27.9 MB

003 Step 2 - Creating a Random Forest Regressor Key Parameters and Model Fitting.mp4

46.1 MB

004 Step 1 - Building a Random Forest Model in R Regression Tutorial.mp4

34.7 MB

005 Step 2 - Visualizing Random Forest Regression Interpreting Stairs and Splits.mp4

36.6 MB

006 Step 3 - Fine-Tuning Random Forest From 10 to 500 Trees for Accurate Prediction.mp4

28.5 MB

007 Random Forest Regression Quiz.html

20.9 KB

/12 - Evaluating Regression Models Performance/

001 Understanding R-squared Evaluating Goodness of Fit in Regression Models.mp4

17.3 MB

002 Understanding Adjusted R-Squared Key Differences from R-Squared Explained.mp4

16.7 MB

003 Evaluating Regression Models Performance Quiz.html

20.8 KB

/13 - Regression Model Selection in Python/

001 Machine-Learning-A-Z-Model-Selection.zip

165.8 KB

001 Make sure you have this Model Selection folder ready.html

3.3 KB

002 Step 1 - Mastering Regression Toolkit Comparing Models for Optimal Performance.mp4

15.8 MB

003 Step 2 - Creating Generic Code Templates for Various Regression Models in Python.mp4

34.9 MB

004 Step 3 Evaluating Regression Models - R-Squared & Performance Metrics Explained.mp4

37.5 MB

005 Step 4 - Implementing R-Squared Score in Python with Scikit-Learn's Metrics.mp4

18.5 MB

006 Step 1 - Selecting the Best Regression Model R-squared Evaluation in Python.mp4

36.3 MB

007 Step 2 - Selecting the Best Regression Model Random Forest vs. SVR Performance.mp4

36.2 MB

008 Conclusion of Part 2 - Regression.html

4.0 KB

008 Regression-Bonus.zip

373.2 KB

/14 - Regression Model Selection in R/

001 Optimizing Regression Models R-Squared vs Adjusted R-Squared Explained.mp4

63.0 MB

002 Linear Regression Analysis Interpreting Coefficients for Business Decisions.mp4

91.4 MB

003 Conclusion of Part 2 - Regression.html

4.0 KB

003 Regression-Bonus.zip

373.2 KB

/15 - -------------------- Part 3 Classification --------------------/

001 Welcome to Part 3 - Classification.html

3.1 KB

002 What is Classification in Machine Learning Fundamentals and Applications.mp4

8.4 MB

/16 - Logistic Regression/

001 Understanding Logistic Regression Predicting Categorical Outcomes.mp4

26.0 MB

002 Logistic Regression Finding the Best Fit Curve Using Maximum Likelihood.mp4

9.7 MB

003 Step 1a - Building a Logistic Regression Model for Customer Behavior Prediction.mp4

18.2 MB

004 Step 1b - Implementing Logistic Regression in Python Data Preprocessing Guide.mp4

14.4 MB

005 Step 2a Python Data Preprocessing for Logistic Regression Dataset Prep.mp4

46.3 MB

006 Step 2b - Data Preprocessing Feature Scaling Techniques for Logistic Regression.mp4

54.1 MB

007 Step 3a - How to Import and Use LogisticRegression Class from Scikit-learn.mp4

34.3 MB

008 Step 3b - Training Logistic Regression Model Fit Method for Classification.mp4

12.2 MB

009 Step 4a - Formatting Single Observation Input for Logistic Regression Predict.mp4

28.5 MB

010 Step 4b Predicted vs. Real Purchase Decisions in Logistic Regression.mp4

7.0 MB

011 Step 5 - Comparing Predicted vs Real Results Python Logistic Regression Guide.mp4

37.3 MB

012 Step 6a - Implementing Confusion Matrix and Accuracy Score in Scikit-Learn.mp4

53.5 MB

013 Step 6b Evaluating Classification Models - Confusion Matrix & Accuracy Metrics.mp4

18.2 MB

014 Step 7a - Visualizing Logistic Regression Decision Boundaries in Python 2D Plot.mp4

46.6 MB

015 Step 7b - Interpreting Logistic Regression Results Prediction Regions Explained.mp4

40.5 MB

016 Step 7c - Visualizing Logistic Regression Performance on New Data in Python.mp4

33.4 MB

017 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html

3.0 KB

018 Step 1 - Data Preprocessing for Logistic Regression in R Preparing Your Dataset.mp4

40.1 MB

019 Step 2 - How to Create a Logistic Regression Classifier Using R's GLM Function.mp4

28.7 MB

020 Step 3 - How to Use R for Logistic Regression Prediction Step-by-Step Guide.mp4

51.5 MB

021 Step 4 - How to Assess Model Accuracy Using a Confusion Matrix in R.mp4

36.7 MB

022 Warning - Update.html

4.1 KB

023 Step 5a - Interpreting Logistic Regression Plots Prediction Regions Explained.mp4

51.9 MB

024 Step 5b Logistic Regression - Linear Classifiers & Prediction Boundaries.mp4

43.8 MB

025 Step 5c - Data Viz in R Colorizing Pixels for Logistic Regression.mp4

68.8 MB

026 Logistic Regression in R - Step 5 (Colour-blind friendly image).html

3.0 KB

027 Optimizing R Scripts for Machine Learning Building a Classification Template.mp4

59.7 MB

028 Machine Learning Regression and Classification EXTRA.html

3.1 KB

029 Logistic Regression Quiz.html

21.0 KB

030 EXTRA CONTENT Logistic Regression Practical Case Study.html

2.9 KB

/17 - K-Nearest Neighbors (K-NN)/

001 K-Nearest Neighbors (KNN) Explained A Beginner's Guide to Classification.mp4

12.1 MB

002 Step 1 - Python KNN Tutorial Classifying Customer Data for Targeted Marketing.mp4

60.8 MB

003 Step 2 - Building a K-Nearest Neighbors Model Scikit-Learn KNeighborsClassifier.mp4

27.5 MB

004 Step 3 - Visualizing KNN Decision Boundaries Python Tutorial for Beginners.mp4

56.5 MB

005 Step 1 - Implementing KNN Classification in R Setup & Data Preparation.mp4

72.2 MB

006 Step 2 - Building a KNN Classifier Preparing Training and Test Sets in R.mp4

31.5 MB

007 Step 3 - Implementing KNN Classification in R Adapting the Classifier Template.mp4

65.3 MB

008 K-Nearest Neighbor Quiz.html

20.6 KB

/18 - Support Vector Machine (SVM)/

001 Support Vector Machines Explained Hyperplanes and Support Vectors in ML.mp4

28.3 MB

002 Step 1 - Building a Support Vector Machine Model with Scikit-learn in Python.mp4

87.0 MB

003 Step 2 - Building a Support Vector Machine Model with Sklearn's SVC in Python.mp4

59.3 MB

004 Step 3 - Understanding Linear SVM Limitations Why It Didn't Beat kNN Classifier.mp4

39.1 MB

005 Step 1 - Building a Linear SVM Classifier in R Data Import and Initial Setup.mp4

88.1 MB

005 SVM.zip

8.5 KB

006 Step 2 Creating & Evaluating Linear SVM Classifier in R - Predictions & Results.mp4

76.3 MB

007 SVM Quiz.html

21.1 KB

/19 - Kernel SVM/

001 From Linear to Non-Linear SVM Exploring Higher Dimensional Spaces.mp4

9.7 MB

002 Support Vector Machines Transforming Non-Linear Data for Linear Separation.mp4

35.1 MB

003 Kernel Trick SVM Machine Learning for Non-Linear Classification.mp4

55.6 MB

004 Understanding Different Types of Kernel Functions for Machine Learning.mp4

7.0 MB

005 Mastering Support Vector Regression Non-Linear SVR with RBF Kernel Explained.mp4

47.9 MB

006 Step 1 - Python Kernel SVM Applying RBF to Solve Non-Linear Classification.mp4

59.9 MB

007 Step 2 - Mastering Kernel SVM Improving Accuracy with Non-Linear Classifiers.mp4

59.4 MB

008 Step 1 - Kernel SVM vs Linear SVM Overcoming Non-Linear Separability in R.mp4

88.3 MB

009 Step 2 - Building a Gaussian Kernel SVM Classifier for Advanced Machine Learning.mp4

25.9 MB

010 Step 3 Visualizing Kernel SVM - Non-Linear Classification in Machine Learning.mp4

67.8 MB

011 Kernel SVM Quiz.html

21.4 KB

/20 - Naive Bayes/

001 Understanding Bayes' Theorem Intuitively From Probability to Machine Learning.mp4

159.0 MB

002 Understanding Naive Bayes Algorithm Probabilistic Classification Explained.mp4

63.0 MB

003 Bayes Theorem in Machine Learning Step-by-Step Probability Calculation.mp4

20.3 MB

004 Why is Naive Bayes Called Naive Understanding the Algorithm's Assumptions.mp4

26.9 MB

005 Step 1 - Naive Bayes in Python Applying ML to Social Network Ads Optimisation.mp4

90.0 MB

006 Step 2 - Python Naive Bayes Training and Evaluating a Classifier on Real Data.mp4

68.1 MB

007 Step 3 - Analyzing Naive Bayes Algorithm Results Accuracy and Predictions.mp4

11.2 MB

008 Step 1 - Getting Started with Naive Bayes Algorithm in R for Classification.mp4

32.2 MB

009 Step 2 - Troubleshooting Naive Bayes Classification Empty Prediction Vectors.mp4

40.9 MB

010 Step 3 - Visualizing Naive Bayes Results Creating Confusion Matrix and Graphs.mp4

48.2 MB

011 Naive Bayes Quiz.html

21.8 KB

/21 - Decision Tree Classification/

001 How Decision Tree Algorithms Work Step-by-Step Guide with Examples.mp4

25.1 MB

002 Step 1 - Implementing Decision Tree Classification in Python with Scikit-learn.mp4

65.5 MB

003 Step 2 - Training a Decision Tree Classifier Optimizing Performance in Python.mp4

55.4 MB

004 Step 1 - R Tutorial Creating a Decision Tree Classifier with rpart Library.mp4

94.4 MB

005 Step 2 - Decision Tree Classifier Optimizing Prediction Boundaries in R.mp4

75.7 MB

006 Step 3 - Decision Tree Visualization Exploring Splits and Conditions in R.mp4

37.9 MB

007 Decision Tree Classification Quiz.html

20.9 KB

/22 - Random Forest Classification/

001 Understanding Random Forest Decision Trees and Majority Voting Explained.mp4

71.2 MB

002 Step 1 - Implementing Random Forest Classification in Python with Scikit-Learn.mp4

59.2 MB

003 Step 2 Random Forest Evaluation - Confusion Matrix & Accuracy Metrics.mp4

55.0 MB

004 Step 1 Random Forest Classifier - From Template to Implementation in R.mp4

41.0 MB

005 Step 2 Random Forest Classification - Visualizing Predictions & Results.mp4

66.2 MB

006 Step 3 - Evaluating Random Forest Performance Test Set Results & Overfitting.mp4

51.6 MB

007 Random Forest Classification Quiz.html

21.1 KB

/23 - Classification Model Selection in Python/

001 Machine-Learning-A-Z-Model-Selection.zip

163.9 KB

001 Make sure you have this Model Selection folder ready.html

3.3 KB

002 Mastering the Confusion Matrix True Positives, Negatives, and Errors.mp4

30.1 MB

003 Step 1 - How to Choose the Right Classification Algorithm for Your Dataset.mp4

47.9 MB

004 Step 2 - Optimizing Model Selection Streamlined Classification Code in Python.mp4

54.6 MB

005 Step 3 - Evaluating Classification Algorithms Accuracy Metrics in Python.mp4

35.8 MB

006 Step 4 - Model Selection Process Evaluating Classification Algorithms.mp4

13.1 MB

/24 - Evaluating Classification Models Performance/

001 Logistic Regression Interpreting Predictions and Errors in Data Science.mp4

28.3 MB

002 Machine Learning Model Evaluation Accuracy Paradox and Better Metrics.mp4

6.2 MB

003 Understanding CAP Curves Assessing Model Performance in Data Science 2024.mp4

27.2 MB

004 Mastering CAP Analysis Assessing Classification Models with Accuracy Ratio.mp4

22.3 MB

005 Classification-Pros-Cons.pdf

30.0 KB

005 Conclusion of Part 3 - Classification.html

5.7 KB

006 Evaluating Classiification Model Performance Quiz.html

21.0 KB

/25 - -------------------- Part 4 Clustering --------------------/

001 Welcome to Part 4 - Clustering.html

3.0 KB

/26 - K-Means Clustering/

001 What is Clustering in Machine Learning Introduction to Unsupervised Learning.mp4

16.2 MB

002 K-Means Clustering Tutorial Visualizing the Machine Learning Algorithm.mp4

5.3 MB

003 How to Use the Elbow Method in K-Means Clustering A Step-by-Step Guide.mp4

10.2 MB

004 K-Means++ Algorithm Solving the Random Initialization Trap in Clustering.mp4

13.8 MB

005 Step 1a - Python K-Means Tutorial Identifying Customer Patterns in Mall Data.mp4

29.8 MB

006 Step 1b K-Means Clustering - Data Preparation in Google ColabJupyter.mp4

24.4 MB

007 Step 2a - K-Means Clustering in Python Selecting Relevant Features for Analysis.mp4

21.2 MB

008 Step 2b K-Means Clustering - Optimizing Features for 2D Visualization.mp4

35.1 MB

009 Step 3a - Implementing the Elbow Method for K-Means Clustering in Python.mp4

35.5 MB

010 Step 3b - Optimizing K-means Clustering WCSS and Elbow Method Implementation.mp4

36.0 MB

011 Step 3c - Plotting the Elbow Method Graph for K-Means Clustering in Python.mp4

15.1 MB

012 Step 4 - Creating a Dependent Variable from K-Means Clustering Results in Python.mp4

25.9 MB

013 Step 5a Visualizing K-Means Clusters of Customer Data with Python Scatter.mp4

44.8 MB

014 Step 5b - Visualizing K-Means Clusters Plotting Customer Segments in Python.mp4

37.5 MB

015 Step 5c - Analyzing Customer Segments Insights from K-means Clustering.mp4

58.2 MB

016 Step 1 - K-Means Clustering in R Importing & Exploring Segmentation Data.mp4

56.5 MB

017 Step 2 - K-Means Algorithm Implementation in R Fitting and Analyzing Mall Data.mp4

70.8 MB

018 K-Means Clustering Quiz.html

20.7 KB

/27 - Hierarchical Clustering/

001 How to Perform Hierarchical Clustering Step-by-Step Guide for Machine Learning.mp4

38.0 MB

002 Visualizing Cluster Dissimilarity Dendrograms in Hierarchical Clustering.mp4

29.1 MB

003 Mastering Hierarchical Clustering Dendrogram Analysis and Threshold Setting.mp4

46.3 MB

004 Step 1 - Getting Started with Hierarchical Clustering Data Setup in Python.mp4

45.5 MB

005 Step 2a - Implementing Hierarchical Clustering Building a Dendrogram with SciPy.mp4

17.1 MB

006 Step 2b - Visualizing Hierarchical Clustering Dendrogram Basics in Python.mp4

38.8 MB

007 Step 2c - Interpreting Dendrograms Optimal Clusters in Hierarchical Clustering.mp4

85.5 MB

008 Step 3a - Building a Hierarchical Clustering Model with Scikit-learn in Python.mp4

27.3 MB

009 Step 3b - Comparing 3 vs 5 Clusters in Hierarchical Clustering Python Example.mp4

34.9 MB

010 Step 1 - R Data Import for Clustering Annual Income & Spending Score Analysis.mp4

12.9 MB

011 Step 2 Using H.clust in R - Building & Interpreting Dendrograms for Clustering.mp4

22.2 MB

012 Step 3 - Implementing Hierarchical Clustering Using Cat Tree Method in R.mp4

35.5 MB

013 Step 4 - Cluster Plot Method Visualizing Hierarchical Clustering Results in R.mp4

44.8 MB

014 Step 5 - Hierarchical Clustering in R Understanding Customer Spending Patterns.mp4

27.0 MB

015 Hierarchical Clustering Quiz.html

20.7 KB

016 Clustering-Pros-Cons.pdf

26.4 KB

016 Conclusion of Part 4 - Clustering.html

2.7 KB

/28 - -------------------- Part 5 Association Rule Learning --------------------/

001 Welcome to Part 5 - Association Rule Learning.html

2.8 KB

/29 - Apriori/

001 Apriori Algorithm Uncovering Hidden Patterns in Data Mining Association Rules.mp4

86.1 MB

002 Step 1 - Association Rule Learning Boost Sales with Python Data Mining.mp4

106.8 MB

003 Step 2 - Creating a List of Transactions for Market Basket Analysis in Python.mp4

161.0 MB

004 Step 3 - Configuring Apriori Function Support, Confidence, and Lift in Python.mp4

83.7 MB

005 Step 4 Visualizing Apriori Algorithm Results for Product Deals in Python.mp4

202.0 MB

006 Step 1 - Creating a Sparse Matrix for Association Rule Mining in R.mp4

129.8 MB

007 Step 2 - Optimizing Apriori Model Choosing Minimum Support and Confidence.mp4

170.3 MB

008 Step 3 Optimizing Product Placement - Apriori Algorithm, Lift & Confidence.mp4

282.7 MB

009 Apriori Quiz.html

20.8 KB

/30 - Eclat/

001 Mastering ECLAT Support-Based Approach to Market Basket Optimization.mp4

37.2 MB

002 Python Tutorial Adapting Apriori to Eclat for Efficient Frequent Itemset Mining.mp4

96.0 MB

003 Eclat vs Apriori Simplified Association Rule Learning in Data Mining.mp4

115.6 MB

003 Eclat.zip

49.7 KB

004 Eclat Quiz.html

20.6 KB

/31 - -------------------- Part 6 Reinforcement Learning --------------------/

001 Welcome to Part 6 - Reinforcement Learning.html

3.8 KB

/32 - Upper Confidence Bound (UCB)/

001 Multi-Armed Bandit Exploration vs Exploitation in Reinforcement Learning.mp4

105.9 MB

002 Upper Confidence Bound Algorithm Solving Multi-Armed Bandit Problems in ML.mp4

87.0 MB

003 Step 1 - Upper Confidence Bound Solving Multi-Armed Bandit Problem in Python.mp4

69.7 MB

004 Step 2 Implementing UCB Algorithm in Python - Data Preparation.mp4

14.4 MB

005 Step 3 - Python Code for Upper Confidence Bound Setting Up Key Variables.mp4

30.2 MB

006 Step 4 - Python for RL Coding the UCB Algorithm Step-by-Step.mp4

67.5 MB

007 Step 5 - Coding Upper Confidence Bound Optimizing Ad Selection in Python.mp4

23.0 MB

008 Step 6 - Reinforcement Learning Finalizing UCB Algorithm in Python.mp4

37.5 MB

009 Step 7 - Visualizing UCB Algorithm Results Histogram Analysis in Python.mp4

33.6 MB

010 Step 1 - Exploring Upper Confidence Bound in R Multi-Armed Bandit Problems.mp4

59.8 MB

011 Step 2 - UCB Algorithm in R Calculating Average Reward & Confidence Interval.mp4

128.0 MB

012 Step 3 Optimizing Ad Selection - UCB & Multi-Armed Bandit Algorithm Explained.mp4

208.9 MB

013 Step 4 - UCB Algorithm Performance Analyzing Ad Selection with Histograms.mp4

19.2 MB

014 Upper Confidence Bound Quiz.html

20.7 KB

/33 - Thompson Sampling/

001 Understanding Thompson Sampling Algorithm Intuition and Implementation.mp4

84.2 MB

002 Deterministic vs Probabilistic UCB and Thompson Sampling in Machine Learning.mp4

25.2 MB

003 Step 1 - Python Implementation of Thompson Sampling for Bandit Problems.mp4

24.7 MB

004 Step 2 - Optimizing Ad Selection with Thompson Sampling Algorithm in Python.mp4

62.7 MB

005 Step 3 - Python Code for Thompson Sampling Maximizing Random Beta Distributions.mp4

65.6 MB

006 Step 4 - Beating UCB with Thompson Sampling Python Multi-Armed Bandit Tutorial.mp4

34.1 MB

007 Additional Resource for this Section.html

4.6 KB

008 Step 1 - Thompson Sampling vs UCB Optimizing Ad Click-Through Rates in R.mp4

104.2 MB

009 Step 2 - Reinforcement Learning Thompson Sampling Outperforms UCB Algorithm.mp4

17.3 MB

010 Thompson Sampling Quiz.html

20.7 KB

/34 - -------------------- Part 7 Natural Language Processing --------------------/

001 Welcome to Part 7 - Natural Language Processing.html

4.1 KB

002 NLP Basics Understanding Bag of Words and Its Applications in Machine Learning.mp4

8.0 MB

003 Deep NLP & Sequence-to-Sequence Models Exploring Natural Language Processing.mp4

12.9 MB

004 From IfElse Rules to CNNs Evolution of Natural Language Processing.mp4

72.5 MB

005 Implementing Bag of Words in NLP A Step-by-Step Tutorial.mp4

62.8 MB

006 Step 1 - Getting Started with Natural Language Processing Sentiment Analysis.mp4

23.8 MB

007 Step 2 - Importing TSV Data for Sentiment Analysis Python NLP Data Processing.mp4

61.3 MB

008 Step 3 - Text Cleaning for NLP Remove Punctuation and Convert to Lowercase.mp4

45.0 MB

009 Step 4 - Text Preprocessing Stemming and Stop Word Removal for NLP in Python.mp4

58.2 MB

010 Step 5 - Tokenization and Feature Extraction for Naive Bayes Sentiment Analysis.mp4

62.9 MB

011 Step 6 - Training and Evaluating a Naive Bayes Classifier for Sentiment Analysis.mp4

47.4 MB

012 Natural Language Processing in Python - EXTRA.html

3.4 KB

013 Homework Challenge.html

3.6 KB

014 Step 1 - Text Classification Using Bag-of-Words and Random Forest in R.mp4

88.6 MB

015 Warning - Update.html

3.0 KB

016 Step 2 - NLP Data Preprocessing in R Importing TSV Files for Sentiment Analysis.mp4

42.3 MB

017 Step 3 - NLP in R Initialising a Corpus for Sentiment Analysis.mp4

33.6 MB

018 Step 4 - NLP Data Cleaning Lowercase Transformation in R for Text Analysis.mp4

15.9 MB

019 Step 5 - Sentiment Analysis Data Cleaning Removing Numbers with TM Map.mp4

11.0 MB

020 Step 6 - Cleaning Text Data Removing Punctuation for NLP and Classification.mp4

31.1 MB

021 Step 7 - Simplifying Corpus Using SnowballC Package to Remove Stop Words in R.mp4

18.8 MB

022 Step 8 - Enhancing Text Classification Stemming for Efficient Feature Matrices.mp4

29.9 MB

023 Step 9 Removing Extra Spaces for NLP Sentiment Analysis Text Cleaning.mp4

92.8 MB

024 Step 10 - Building a Document-Term Matrix for NLP Text Classification.mp4

122.6 MB

025 Homework Challenge.html

3.7 KB

026 Natural Language Processing Quiz.html

20.6 KB

/35 - -------------------- Part 8 Deep Learning --------------------/

001 Welcome to Part 8 - Deep Learning.html

3.2 KB

002 Introduction to Deep Learning From Historical Context to Modern Applications.mp4

186.9 MB

003 Deep Learning Quiz.html

20.7 KB

/36 - Artificial Neural Networks/

001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4

7.2 MB

002 Deep Learning Basics Exploring Neurons, Synapses, and Activation Functions.mp4

67.4 MB

003 Neural Network Basics Understanding Activation Functions in Deep Learning.mp4

25.4 MB

004 How Do Neural Networks Work Step-by-Step Guide to Deep Learning Algorithms.mp4

52.7 MB

005 How Do Neural Networks Learn Deep Learning Fundamentals Explained.mp4

82.6 MB

006 Deep Learning Fundamentals Gradient Descent vs Brute Force Optimization.mp4

40.5 MB

007 Stochastic vs Batch Gradient Descent Deep Learning Fundamentals.mp4

50.4 MB

008 Deep Learning Fundamentals Training Neural Networks Step-by-Step.mp4

29.7 MB

009 Bank Customer Churn Prediction Machine Learning Model with TensorFlow.mp4

71.8 MB

010 Step 1 ANN in Python Predicting Customer Churn with TensorFlow.mp4

98.5 MB

011 Step 2 - TensorFlow 2.0 Tutorial Preprocessing Data for Customer Churn Model.mp4

164.8 MB

012 Step 3 - Designing ANN Sequential Model & Dense Layers for Deep Learning.mp4

70.7 MB

013 Step 4 - Train Neural Network Compile & Fit for Customer Churn Prediction.mp4

51.3 MB

014 Step 5 - Implementing ANN for Churn Prediction From Model to Confusion Matrix.mp4

125.7 MB

015 Step 1 - How to Preprocess Data for Artificial Neural Networks in R.mp4

239.3 MB

016 Step 2 - How to Install and Initialize H2O for Efficient Deep Learning in R.mp4

45.9 MB

017 Step 3 Building Deep Learning Model - H2O Neural Network Layer Config.mp4

212.7 MB

018 Step 4 - H2O Deep Learning Making Predictions and Evaluating Model Accuracy.mp4

177.5 MB

019 Deep Learning Additional Content.html

3.3 KB

020 EXTRA CONTENT ANN Case Study.html

2.8 KB

021 ANN QUIZ.html

20.6 KB

/37 - Convolutional Neural Networks/

001 dataset.zip

232.0 MB

001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4

9.5 MB

002 Introduction to CNNs Understanding Deep Learning for Computer Vision.mp4

111.8 MB

003 Step 1 - Understanding Convolution in CNNs Feature Detection and Feature Maps.mp4

96.6 MB

004 Step 1b - Applying ReLU to Convolutional Layers Breaking Up Image Linearity.mp4

32.8 MB

005 Step 2 - Max Pooling in CNNs Enhancing Spatial Invariance for Image Recognition.mp4

146.6 MB

006 Step 3 - Understanding Flattening in Convolutional Neural Network Architecture.mp4

4.5 MB

007 Step 4 - Fully Connected Layers in CNNs Optimizing Feature Combination.mp4

104.2 MB

008 Deep Learning Basics How Convolutional Neural Networks (CNNs) Process Images.mp4

17.5 MB

009 Deep Learning Essentials Understanding Softmax and Cross-Entropy in CNNs.mp4

79.3 MB

010 dataset.zip

232.4 MB

010 Make sure you have your dataset ready.html

3.1 KB

011 Step 1 Intro to CNNs for Image Classification.mp4

53.6 MB

012 Step 2 - Keras ImageDataGenerator Prevent Overfitting in CNN Models.mp4

183.5 MB

013 Step 3 - TensorFlow CNN Convolution to Output Layer for Vision Tasks.mp4

106.9 MB

014 Step 4 CNN Training - Epochs, Loss Function & Metrics in TensorFlow.mp4

36.8 MB

015 Step 5 - Making Single Predictions with Convolutional Neural Networks in Python.mp4

123.3 MB

016 Hands-on CNN Training Using Jupyter Notebook for Image Classification.mp4

195.6 MB

017 Deep Learning Additional Content #2.html

3.2 KB

018 CNN Quiz.html

20.6 KB

/38 - -------------------- Part 9 Dimensionality Reduction --------------------/

001 Welcome to Part 9 - Dimensionality Reduction.html

3.5 KB

/39 - Principal Component Analysis (PCA)/

001 PCA Algorithm Intuition Reducing Dimensions in Unsupervised Learning.mp4

38.4 MB

002 Step 1 PCA in Python Reducing Wine Dataset Features with Scikit-learn.mp4

167.6 MB

003 Step 2 - PCA in Action Reducing Dimensions and Predicting Customer Segments.mp4

50.7 MB

004 Step 1 in R - Understanding Principal Component Analysis for Feature Extraction.mp4

58.3 MB

005 Step 2 - Using preProcess Function in R for PCA Extracting Principal Components.mp4

86.8 MB

006 Step 3 - Implementing PCA and SVM for Customer Segmentation Practical Guide.mp4

120.1 MB

007 PCA Quiz.html

20.7 KB

/40 - Linear Discriminant Analysis (LDA)/

001 LDA Intuition Maximizing Class Separation in Machine Learning Algorithms.mp4

25.5 MB

002 Mastering Linear Discriminant Analysis Step-by-Step Python Implementation.mp4

128.9 MB

003 Step-by-Step Guide Applying LDA for Feature Extraction in Machine Learning.mp4

261.0 MB

004 LDA Quiz.html

20.7 KB

/

XiPCuLT.nfo

6.2 KB

/42 - -------------------- Part 10 Model Selection & Boosting --------------------/

001 Welcome to Part 10 - Model Selection & Boosting.html

3.2 KB

/43 - Model Selection/

001 Mastering Model Evaluation K-Fold Cross-Validation Techniques Explained.mp4

114.3 MB

002 How to Master the Bias-Variance Tradeoff in Machine Learning Models.mp4

38.1 MB

003 K-Fold Cross-Validation in Python Improve Machine Learning Model Performance.mp4

111.9 MB

004 Optimizing SVM Models with GridSearchCV A Step-by-Step Python Tutorial.mp4

197.0 MB

005 Evaluating ML Model Accuracy K-Fold Cross-Validation Implementation in R.mp4

255.5 MB

006 Optimizing SVM Models with Grid Search A Step-by-Step R Tutorial.mp4

70.7 MB

/44 - XGBoost/

001 How to Use XGBoost in Python for Cancer Prediction with High Accuracy.mp4

149.8 MB

002 Model Selection and Boosting Additional Content.html

3.5 KB

003 XGBoost Tutorial Implementing Gradient Boosting for Classification Problems.mp4

152.2 MB

/45 - Annex Logistic Regression (Long Explanation)/

001 Logistic Regression Intuition.mp4

47.7 MB

/46 - Congratulations!! Don't forget your Prize )/

001 Huge Congrats for completing the challenge!.html

7.1 KB

002 Bonus How To UNLOCK Top Salaries (Live Training).html

4.1 KB

 

Total files 433


Copyright © 2025 FileMood.com