/41 - Kernel PCA/
|
002 Implementing Kernel PCA for Non-Linear Data Step-by-Step Guide.mp4
|
419.0 MB
|
001 Kernel PCA in Python Improving Classification Accuracy with Feature Extraction.mp4
|
48.6 MB
|
/01 - Welcome to the course! Here we will help you get started in the best conditions/
|
001 Welcome Challenge!.html
|
7.8 KB
|
002 Get Excited about ML Predict Car Purchases with Python & Scikit-learn in 5 mins.mp4
|
53.2 MB
|
003 Get all the Datasets, Codes and Slides here.html
|
2.7 KB
|
004 How to Use Google Colab & Machine Learning Course Folder.mp4
|
40.1 MB
|
005 Getting Started with R Programming Install R and RStudio on Windows & Mac.mp4
|
55.2 MB
|
006 EXTRA Use ChatGPT to Boost your ML Skills.html
|
3.3 KB
|
/02 - -------------------- Part 1 Data Preprocessing --------------------/
|
001 Welcome to Part 1 - Data Preprocessing.html
|
2.8 KB
|
002 Machine Learning Workflow Importing, Modeling, and Evaluating Your ML Model.mp4
|
8.4 MB
|
003 Data Preprocessing Importance of Training-Test Split in ML Model Evaluation.mp4
|
8.3 MB
|
004 Feature Scaling in Machine Learning Normalization vs Standardization Explained.mp4
|
19.0 MB
|
/03 - Data Preprocessing in Python/
|
001 Step 1 - Data Preprocessing in Python Preparing Your Dataset for ML Models.mp4
|
16.2 MB
|
002 Step 2 - Data Preprocessing Techniques From Raw Data to ML-Ready Datasets.mp4
|
56.1 MB
|
003 Machine Learning Toolkit Importing NumPy, Matplotlib, and Pandas Libraries.mp4
|
11.7 MB
|
004 Step 1 - Machine Learning Basics Importing Datasets Using Pandas read_csv().mp4
|
16.6 MB
|
005 Step 2 - Using Pandas iloc for Feature Selection in ML Data Preprocessing.mp4
|
15.2 MB
|
006 Step 3 - Preprocessing Data Building X and Y Vectors for ML Model Training.mp4
|
21.8 MB
|
007 For Python learners, summary of Object-oriented programming classes & objects.html
|
3.9 KB
|
008 Coding Exercise 1 Importing and Preprocessing a Dataset for Machine Learning.html
|
10.8 KB
|
009 Step 1 - Using Scikit-Learn to Replace Missing Values in Machine Learning.mp4
|
25.4 MB
|
010 Step 2 - Imputing Missing Data in Python SimpleImputer and Numerical Columns.mp4
|
47.9 MB
|
011 Coding Exercise 2 Handling Missing Data in a Dataset for Machine Learning.html
|
33.5 KB
|
012 Step 1 - One-Hot Encoding Transforming Categorical Features for ML Algorithms.mp4
|
15.1 MB
|
013 Step 2 - Handling Categorical Data One-Hot Encoding with ColumnTransformer.mp4
|
32.1 MB
|
014 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.mp4
|
22.7 MB
|
015 Coding Exercise 3 Encoding Categorical Data for Machine Learning.html
|
23.3 KB
|
016 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4
|
15.9 MB
|
017 Step 2 - Preparing Data Creating Training and Test Sets in Python for ML Models.mp4
|
21.7 MB
|
018 Step 3 - Splitting Data into Training and Test Sets Best Practices in Python.mp4
|
18.4 MB
|
019 Coding Exercise 4 Dataset Splitting and Feature Scaling.html
|
10.6 KB
|
020 Step 1 - Feature Scaling in ML Why It's Crucial for Data Preprocessing.mp4
|
20.0 MB
|
021 Step 2 - How to Scale Numeric Features in Python for ML Preprocessing.mp4
|
22.0 MB
|
022 Step 3 - Implementing Feature Scaling Fit and Transform Methods Explained.mp4
|
17.7 MB
|
023 Step 4 - Applying the Same Scaler to Training and Test Sets in Python.mp4
|
26.2 MB
|
024 Coding exercise 5 Feature scaling for Machine Learning.html
|
94.0 KB
|
/04 - Data Preprocessing in R/
|
001 Data Preprocessing for Beginners Preparing Your Dataset for Machine Learning.mp4
|
6.9 MB
|
002 Data Preprocessing Tutorial Understanding Independent vs Dependent Variables.mp4
|
10.0 MB
|
003 R Tutorial Importing and Viewing Datasets for Data Preprocessing.mp4
|
11.9 MB
|
004 How to Handle Missing Values in R Data Preprocessing for Machine Learning.mp4
|
34.9 MB
|
005 Using R's Factor Function to Handle Categorical Variables in Data Analysis.mp4
|
46.2 MB
|
006 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4
|
27.7 MB
|
007 Step 2 - Preparing Data Creating Training and Test Sets in R for ML Models.mp4
|
34.1 MB
|
008 Feature Scaling in ML Step 1 Why It's Crucial for Data Preprocessing.mp4
|
33.8 MB
|
009 How to Scale Numeric Features in R for Machine Learning Preprocessing - Step 2.mp4
|
64.2 MB
|
010 Essential Steps in Data Preprocessing Preparing Your Dataset for ML Models.mp4
|
39.9 MB
|
011 Data Preprocessing Quiz.html
|
21.4 KB
|
/05 - -------------------- Part 2 Regression --------------------/
|
001 Welcome to Part 2 - Regression.html
|
3.1 KB
|
/06 - Simple Linear Regression/
|
001 Simple Linear Regression Understanding the Equation and Potato Yield Prediction.mp4
|
7.1 MB
|
002 How to Find the Best Fit Line Understanding Ordinary Least Squares Regression.mp4
|
13.3 MB
|
003 Step 1a - Mastering Simple Linear Regression Key Concepts and Implementation.mp4
|
12.6 MB
|
004 Step 1b Data Preprocessing for Linear Regression Import & Split Data in Python.mp4
|
18.8 MB
|
005 Step 2a - Building a Simple Linear Regression Model with Scikit-learn in Python.mp4
|
13.0 MB
|
006 Step 2b - Machine Learning Basics Training a Linear Regression Model in Python.mp4
|
16.5 MB
|
007 Step 3 - Using Scikit-Learn's Predict Method for Linear Regression in Python.mp4
|
35.5 MB
|
008 Step 4a - Linear Regression Plotting Real vs Predicted Salaries Visualization.mp4
|
28.1 MB
|
009 Step 4b - Evaluating Linear Regression Model Performance on Test Data.mp4
|
30.9 MB
|
010 Simple Linear Regression in Python - Additional Lecture.html
|
3.5 KB
|
011 Step 1 - Data Preprocessing in R Preparing for Linear Regression Modeling.mp4
|
19.4 MB
|
012 Step 2 - Fitting Simple Linear Regression in R LM Function and Model Summary.mp4
|
45.4 MB
|
013 Step 3 - How to Use predict() Function in R for Linear Regression Analysis.mp4
|
27.3 MB
|
014 Step 4a - Plotting Linear Regression Data in R ggplot2 Step-by-Step Guide.mp4
|
52.7 MB
|
015 Step 4b - Creating a Scatter Plot with Regression Line in R Using ggplot2.mp4
|
36.1 MB
|
016 Step 4c - Comparing Training vs Test Set Predictions in Linear Regression.mp4
|
25.8 MB
|
017 Simple Linear Regression Quiz.html
|
21.0 KB
|
/07 - Multiple Linear Regression/
|
001 Startup Success Prediction Regression Model for VC Fund Decision-Making.mp4
|
54.3 MB
|
002 Multiple Linear Regression Independent Variables & Prediction Models.mp4
|
12.4 MB
|
003 Download-the-PDF.url
|
0.1 KB
|
003 Understanding Linear Regression Assumptions Linearity, Homoscedasticity & More.mp4
|
25.8 MB
|
004 How to Handle Categorical Variables in Linear Regression Models.mp4
|
38.8 MB
|
005 Multicollinearity in Regression Understanding the Dummy Variable Trap.mp4
|
25.8 MB
|
006 Understanding P-Values and Statistical Significance in Hypothesis Testing.mp4
|
36.1 MB
|
007 Backward Elimination Building Robust Multiple Linear Regression Models.mp4
|
51.0 MB
|
008 Step 1a - Hands-On Data Preprocessing for Multiple Linear Regression in Python.mp4
|
31.0 MB
|
009 Step 1b - Hands-On Guide Implementing Multiple Linear Regression in Python.mp4
|
19.4 MB
|
010 Step 2a - Hands-on Multiple Linear Regression Preparing Data in Python.mp4
|
46.6 MB
|
011 Step 2b - Multiple Linear Regression in Python Preparing Your Dataset.mp4
|
62.0 MB
|
012 Step 3a - Scikit-learn for Multiple Linear Regression Efficient Model Building.mp4
|
22.9 MB
|
013 Step 3b - Scikit-Learn Building & Training Multiple Linear Regression Models.mp4
|
24.2 MB
|
014 Step 4a Comparing Real vs Predicted Profits in Linear Regression - Hands-on Gui.mp4
|
26.6 MB
|
015 Step 4b - ML in Python Evaluating Multiple Linear Regression Accuracy.mp4
|
23.0 MB
|
016 Multiple Linear Regression in Python - Backward Elimination.html
|
5.9 KB
|
017 Multiple Linear Regression in Python - EXTRA CONTENT.html
|
3.5 KB
|
018 Step 1a - Data Preprocessing for MLR Handling Categorical Data.mp4
|
18.3 MB
|
019 Step 1b - Preparing Datasets for Multiple Linear Regression in R.mp4
|
25.7 MB
|
020 Step 2a - Multiple Linear Regression in R Building & Interpreting the Regressor.mp4
|
48.0 MB
|
021 Step 2b Statistical Significance - P-values & Stars in Regression.mp4
|
31.5 MB
|
022 Step 3 - How to Use predict() Function in R for Multiple Linear Regression.mp4
|
33.7 MB
|
023 Optimizing Multiple Regression Models Backward Elimination Technique in R.mp4
|
137.1 MB
|
024 Mastering Feature Selection Backward Elimination in R for Linear Regression.mp4
|
59.5 MB
|
025 Multiple Linear Regression in R - Automatic Backward Elimination.html
|
3.1 KB
|
026 Multiple Linear Regression Quiz.html
|
21.1 KB
|
external-links.txt
|
0.1 KB
|
/08 - Polynomial Regression/
|
001 Understanding Polynomial Linear Regression Applications and Examples.mp4
|
14.6 MB
|
002 Step 1a - Building a Polynomial Regression Model for Salary Prediction in Python.mp4
|
11.2 MB
|
003 Step 1b - Setting Up Data for Linear vs Polynomial Regression Comparison.mp4
|
30.6 MB
|
004 Step 2a Linear to Polynomial Regression - Preparing Data for Advanced Models.mp4
|
26.4 MB
|
005 Step 2b - Transforming Linear to Polynomial Regression A Step-by-Step Guide.mp4
|
29.8 MB
|
006 Step 3a - Plotting Real vs Predicted Salaries Linear Regression Visualization.mp4
|
26.6 MB
|
007 Step 3b - Polynomial vs Linear Regression Better Fit with Higher Degrees.mp4
|
25.3 MB
|
008 Step 4a Predicting Salaries - Linear Regression in Python (Array Input Guide).mp4
|
17.6 MB
|
009 Step 4b Python Polynomial Regression - Predicting Salaries Accurately.mp4
|
13.7 MB
|
010 Step 1a - Implementing Polynomial Regression in R HR Salary Analysis Case Study.mp4
|
13.3 MB
|
011 Step 1b - ML Fundamentals Preparing Data for Polynomial Regression.mp4
|
22.8 MB
|
012 Step 2a - Building Linear & Polynomial Regression Models in R A Comparison.mp4
|
26.0 MB
|
013 Step 2b - Building a Polynomial Regression Model Adding Squared & Cubed Terms.mp4
|
42.8 MB
|
014 Step 3a Visualizing Regression Results - Creating Scatter Plots with ggplot2 in.mp4
|
36.2 MB
|
015 Step 3b Visualizing Linear Regression - Plotting Predictions vs Observations.mp4
|
33.1 MB
|
016 Step 3c - Polynomial Regression Curve Fitting for Better Predictions.mp4
|
20.8 MB
|
017 Step 4a - How to Make Single Predictions Using Polynomial Regression in R.mp4
|
25.6 MB
|
018 Step 4b - Predicting Salaries with Polynomial Regression A Practical Example.mp4
|
24.3 MB
|
019 Step 1 - Building a Reusable Framework for Nonlinear Regression Analysis in R.mp4
|
35.0 MB
|
020 Step 2 - Mastering Regression Model Visualization Increasing Data Resolution.mp4
|
22.3 MB
|
021 Polynomial Regression Quiz.html
|
21.0 KB
|
/09 - Support Vector Regression (SVR)/
|
001 How Does Support Vector Regression (SVR) Differ from Linear Regression.mp4
|
41.2 MB
|
002 RBF Kernel SVR From Linear to Non-Linear Support Vector Regression.mp4
|
22.2 MB
|
003 Step 1a - SVR Model Training Feature Scaling and Dataset Preparation in Python.mp4
|
18.5 MB
|
004 Step 1b - SVR in Python Importing Libraries and Dataset for Machine Learning.mp4
|
14.9 MB
|
005 Step 2a - Mastering Feature Scaling for Support Vector Regression in Python.mp4
|
27.8 MB
|
006 Step 2b Reshaping Data for SVR - Preparing Y Vector for Feature Scaling (Python.mp4
|
23.9 MB
|
007 Step 2c SVR Data Prep - Scaling X & Y Independently with StandardScaler.mp4
|
13.6 MB
|
008 Step 3 SVM Regression Creating & Training SVR Model with RBF Kernel in Python.mp4
|
44.3 MB
|
009 Step 4 - SVR Model Prediction Handling Scaled Data and Inverse Transformation.mp4
|
17.1 MB
|
010 Step 5a - How to Plot Support Vector Regression (SVR) Models Step-by-Step Guide.mp4
|
18.4 MB
|
011 Step 5b - SVR Scaling & Inverse Transformation in Python.mp4
|
20.7 MB
|
012 Step 1 - SVR Tutorial Creating a Support Vector Machine Regressor in R.mp4
|
101.2 MB
|
013 Step 2 - Support Vector Regression Building a Predictive Model in Python.mp4
|
21.9 MB
|
014 SVR Quiz.html
|
20.9 KB
|
/10 - Decision Tree Regression/
|
001 How to Build a Regression Tree Step-by-Step Guide for Machine Learning.mp4
|
31.4 MB
|
002 Step 1a - Decision Tree Regression Building a Model without Feature Scaling.mp4
|
14.4 MB
|
003 Step 1b Uploading & Preprocessing Data for Decision Tree Regression in Python.mp4
|
17.7 MB
|
004 Step 2 - Implementing DecisionTreeRegressor A Step-by-Step Guide in Python.mp4
|
18.9 MB
|
005 Step 3 - Implementing Decision Tree Regression in Python Making Predictions.mp4
|
13.6 MB
|
006 Step 4 - Visualizing Decision Tree Regression High-Resolution Results.mp4
|
25.7 MB
|
007 Step 1 - Creating a Decision Tree Regressor Using rpart Function in R.mp4
|
28.3 MB
|
008 Step 2 - Decision Tree Regression Fixing Splits with rpart Control Parameter.mp4
|
39.9 MB
|
009 Step 3 Non-Continuous Regression - Decision Tree Visualization Challenges.mp4
|
16.0 MB
|
010 Step 4 - Visualizing Decision Tree Understanding Intervals and Predictions.mp4
|
19.3 MB
|
011 Decision Tree Regression Quiz.html
|
20.7 KB
|
/11 - Random Forest Regression/
|
001 Understanding Random Forest Algorithm Intuition and Application in ML.mp4
|
56.7 MB
|
002 Step 1 - Building a Random Forest Regression Model with Python and Scikit-Learn.mp4
|
27.9 MB
|
003 Step 2 - Creating a Random Forest Regressor Key Parameters and Model Fitting.mp4
|
46.1 MB
|
004 Step 1 - Building a Random Forest Model in R Regression Tutorial.mp4
|
34.7 MB
|
005 Step 2 - Visualizing Random Forest Regression Interpreting Stairs and Splits.mp4
|
36.6 MB
|
006 Step 3 - Fine-Tuning Random Forest From 10 to 500 Trees for Accurate Prediction.mp4
|
28.5 MB
|
007 Random Forest Regression Quiz.html
|
20.9 KB
|
/12 - Evaluating Regression Models Performance/
|
001 Understanding R-squared Evaluating Goodness of Fit in Regression Models.mp4
|
17.3 MB
|
002 Understanding Adjusted R-Squared Key Differences from R-Squared Explained.mp4
|
16.7 MB
|
003 Evaluating Regression Models Performance Quiz.html
|
20.8 KB
|
/13 - Regression Model Selection in Python/
|
001 Machine-Learning-A-Z-Model-Selection.zip
|
165.8 KB
|
001 Make sure you have this Model Selection folder ready.html
|
3.3 KB
|
002 Step 1 - Mastering Regression Toolkit Comparing Models for Optimal Performance.mp4
|
15.8 MB
|
003 Step 2 - Creating Generic Code Templates for Various Regression Models in Python.mp4
|
34.9 MB
|
004 Step 3 Evaluating Regression Models - R-Squared & Performance Metrics Explained.mp4
|
37.5 MB
|
005 Step 4 - Implementing R-Squared Score in Python with Scikit-Learn's Metrics.mp4
|
18.5 MB
|
006 Step 1 - Selecting the Best Regression Model R-squared Evaluation in Python.mp4
|
36.3 MB
|
007 Step 2 - Selecting the Best Regression Model Random Forest vs. SVR Performance.mp4
|
36.2 MB
|
008 Conclusion of Part 2 - Regression.html
|
4.0 KB
|
008 Regression-Bonus.zip
|
373.2 KB
|
/14 - Regression Model Selection in R/
|
001 Optimizing Regression Models R-Squared vs Adjusted R-Squared Explained.mp4
|
63.0 MB
|
002 Linear Regression Analysis Interpreting Coefficients for Business Decisions.mp4
|
91.4 MB
|
003 Conclusion of Part 2 - Regression.html
|
4.0 KB
|
003 Regression-Bonus.zip
|
373.2 KB
|
/15 - -------------------- Part 3 Classification --------------------/
|
001 Welcome to Part 3 - Classification.html
|
3.1 KB
|
002 What is Classification in Machine Learning Fundamentals and Applications.mp4
|
8.4 MB
|
/16 - Logistic Regression/
|
001 Understanding Logistic Regression Predicting Categorical Outcomes.mp4
|
26.0 MB
|
002 Logistic Regression Finding the Best Fit Curve Using Maximum Likelihood.mp4
|
9.7 MB
|
003 Step 1a - Building a Logistic Regression Model for Customer Behavior Prediction.mp4
|
18.2 MB
|
004 Step 1b - Implementing Logistic Regression in Python Data Preprocessing Guide.mp4
|
14.4 MB
|
005 Step 2a Python Data Preprocessing for Logistic Regression Dataset Prep.mp4
|
46.3 MB
|
006 Step 2b - Data Preprocessing Feature Scaling Techniques for Logistic Regression.mp4
|
54.1 MB
|
007 Step 3a - How to Import and Use LogisticRegression Class from Scikit-learn.mp4
|
34.3 MB
|
008 Step 3b - Training Logistic Regression Model Fit Method for Classification.mp4
|
12.2 MB
|
009 Step 4a - Formatting Single Observation Input for Logistic Regression Predict.mp4
|
28.5 MB
|
010 Step 4b Predicted vs. Real Purchase Decisions in Logistic Regression.mp4
|
7.0 MB
|
011 Step 5 - Comparing Predicted vs Real Results Python Logistic Regression Guide.mp4
|
37.3 MB
|
012 Step 6a - Implementing Confusion Matrix and Accuracy Score in Scikit-Learn.mp4
|
53.5 MB
|
013 Step 6b Evaluating Classification Models - Confusion Matrix & Accuracy Metrics.mp4
|
18.2 MB
|
014 Step 7a - Visualizing Logistic Regression Decision Boundaries in Python 2D Plot.mp4
|
46.6 MB
|
015 Step 7b - Interpreting Logistic Regression Results Prediction Regions Explained.mp4
|
40.5 MB
|
016 Step 7c - Visualizing Logistic Regression Performance on New Data in Python.mp4
|
33.4 MB
|
017 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html
|
3.0 KB
|
018 Step 1 - Data Preprocessing for Logistic Regression in R Preparing Your Dataset.mp4
|
40.1 MB
|
019 Step 2 - How to Create a Logistic Regression Classifier Using R's GLM Function.mp4
|
28.7 MB
|
020 Step 3 - How to Use R for Logistic Regression Prediction Step-by-Step Guide.mp4
|
51.5 MB
|
021 Step 4 - How to Assess Model Accuracy Using a Confusion Matrix in R.mp4
|
36.7 MB
|
022 Warning - Update.html
|
4.1 KB
|
023 Step 5a - Interpreting Logistic Regression Plots Prediction Regions Explained.mp4
|
51.9 MB
|
024 Step 5b Logistic Regression - Linear Classifiers & Prediction Boundaries.mp4
|
43.8 MB
|
025 Step 5c - Data Viz in R Colorizing Pixels for Logistic Regression.mp4
|
68.8 MB
|
026 Logistic Regression in R - Step 5 (Colour-blind friendly image).html
|
3.0 KB
|
027 Optimizing R Scripts for Machine Learning Building a Classification Template.mp4
|
59.7 MB
|
028 Machine Learning Regression and Classification EXTRA.html
|
3.1 KB
|
029 Logistic Regression Quiz.html
|
21.0 KB
|
030 EXTRA CONTENT Logistic Regression Practical Case Study.html
|
2.9 KB
|
/17 - K-Nearest Neighbors (K-NN)/
|
001 K-Nearest Neighbors (KNN) Explained A Beginner's Guide to Classification.mp4
|
12.1 MB
|
002 Step 1 - Python KNN Tutorial Classifying Customer Data for Targeted Marketing.mp4
|
60.8 MB
|
003 Step 2 - Building a K-Nearest Neighbors Model Scikit-Learn KNeighborsClassifier.mp4
|
27.5 MB
|
004 Step 3 - Visualizing KNN Decision Boundaries Python Tutorial for Beginners.mp4
|
56.5 MB
|
005 Step 1 - Implementing KNN Classification in R Setup & Data Preparation.mp4
|
72.2 MB
|
006 Step 2 - Building a KNN Classifier Preparing Training and Test Sets in R.mp4
|
31.5 MB
|
007 Step 3 - Implementing KNN Classification in R Adapting the Classifier Template.mp4
|
65.3 MB
|
008 K-Nearest Neighbor Quiz.html
|
20.6 KB
|
/18 - Support Vector Machine (SVM)/
|
001 Support Vector Machines Explained Hyperplanes and Support Vectors in ML.mp4
|
28.3 MB
|
002 Step 1 - Building a Support Vector Machine Model with Scikit-learn in Python.mp4
|
87.0 MB
|
003 Step 2 - Building a Support Vector Machine Model with Sklearn's SVC in Python.mp4
|
59.3 MB
|
004 Step 3 - Understanding Linear SVM Limitations Why It Didn't Beat kNN Classifier.mp4
|
39.1 MB
|
005 Step 1 - Building a Linear SVM Classifier in R Data Import and Initial Setup.mp4
|
88.1 MB
|
005 SVM.zip
|
8.5 KB
|
006 Step 2 Creating & Evaluating Linear SVM Classifier in R - Predictions & Results.mp4
|
76.3 MB
|
007 SVM Quiz.html
|
21.1 KB
|
/19 - Kernel SVM/
|
001 From Linear to Non-Linear SVM Exploring Higher Dimensional Spaces.mp4
|
9.7 MB
|
002 Support Vector Machines Transforming Non-Linear Data for Linear Separation.mp4
|
35.1 MB
|
003 Kernel Trick SVM Machine Learning for Non-Linear Classification.mp4
|
55.6 MB
|
004 Understanding Different Types of Kernel Functions for Machine Learning.mp4
|
7.0 MB
|
005 Mastering Support Vector Regression Non-Linear SVR with RBF Kernel Explained.mp4
|
47.9 MB
|
006 Step 1 - Python Kernel SVM Applying RBF to Solve Non-Linear Classification.mp4
|
59.9 MB
|
007 Step 2 - Mastering Kernel SVM Improving Accuracy with Non-Linear Classifiers.mp4
|
59.4 MB
|
008 Step 1 - Kernel SVM vs Linear SVM Overcoming Non-Linear Separability in R.mp4
|
88.3 MB
|
009 Step 2 - Building a Gaussian Kernel SVM Classifier for Advanced Machine Learning.mp4
|
25.9 MB
|
010 Step 3 Visualizing Kernel SVM - Non-Linear Classification in Machine Learning.mp4
|
67.8 MB
|
011 Kernel SVM Quiz.html
|
21.4 KB
|
/20 - Naive Bayes/
|
001 Understanding Bayes' Theorem Intuitively From Probability to Machine Learning.mp4
|
159.0 MB
|
002 Understanding Naive Bayes Algorithm Probabilistic Classification Explained.mp4
|
63.0 MB
|
003 Bayes Theorem in Machine Learning Step-by-Step Probability Calculation.mp4
|
20.3 MB
|
004 Why is Naive Bayes Called Naive Understanding the Algorithm's Assumptions.mp4
|
26.9 MB
|
005 Step 1 - Naive Bayes in Python Applying ML to Social Network Ads Optimisation.mp4
|
90.0 MB
|
006 Step 2 - Python Naive Bayes Training and Evaluating a Classifier on Real Data.mp4
|
68.1 MB
|
007 Step 3 - Analyzing Naive Bayes Algorithm Results Accuracy and Predictions.mp4
|
11.2 MB
|
008 Step 1 - Getting Started with Naive Bayes Algorithm in R for Classification.mp4
|
32.2 MB
|
009 Step 2 - Troubleshooting Naive Bayes Classification Empty Prediction Vectors.mp4
|
40.9 MB
|
010 Step 3 - Visualizing Naive Bayes Results Creating Confusion Matrix and Graphs.mp4
|
48.2 MB
|
011 Naive Bayes Quiz.html
|
21.8 KB
|
/21 - Decision Tree Classification/
|
001 How Decision Tree Algorithms Work Step-by-Step Guide with Examples.mp4
|
25.1 MB
|
002 Step 1 - Implementing Decision Tree Classification in Python with Scikit-learn.mp4
|
65.5 MB
|
003 Step 2 - Training a Decision Tree Classifier Optimizing Performance in Python.mp4
|
55.4 MB
|
004 Step 1 - R Tutorial Creating a Decision Tree Classifier with rpart Library.mp4
|
94.4 MB
|
005 Step 2 - Decision Tree Classifier Optimizing Prediction Boundaries in R.mp4
|
75.7 MB
|
006 Step 3 - Decision Tree Visualization Exploring Splits and Conditions in R.mp4
|
37.9 MB
|
007 Decision Tree Classification Quiz.html
|
20.9 KB
|
/22 - Random Forest Classification/
|
001 Understanding Random Forest Decision Trees and Majority Voting Explained.mp4
|
71.2 MB
|
002 Step 1 - Implementing Random Forest Classification in Python with Scikit-Learn.mp4
|
59.2 MB
|
003 Step 2 Random Forest Evaluation - Confusion Matrix & Accuracy Metrics.mp4
|
55.0 MB
|
004 Step 1 Random Forest Classifier - From Template to Implementation in R.mp4
|
41.0 MB
|
005 Step 2 Random Forest Classification - Visualizing Predictions & Results.mp4
|
66.2 MB
|
006 Step 3 - Evaluating Random Forest Performance Test Set Results & Overfitting.mp4
|
51.6 MB
|
007 Random Forest Classification Quiz.html
|
21.1 KB
|
/23 - Classification Model Selection in Python/
|
001 Machine-Learning-A-Z-Model-Selection.zip
|
163.9 KB
|
001 Make sure you have this Model Selection folder ready.html
|
3.3 KB
|
002 Mastering the Confusion Matrix True Positives, Negatives, and Errors.mp4
|
30.1 MB
|
003 Step 1 - How to Choose the Right Classification Algorithm for Your Dataset.mp4
|
47.9 MB
|
004 Step 2 - Optimizing Model Selection Streamlined Classification Code in Python.mp4
|
54.6 MB
|
005 Step 3 - Evaluating Classification Algorithms Accuracy Metrics in Python.mp4
|
35.8 MB
|
006 Step 4 - Model Selection Process Evaluating Classification Algorithms.mp4
|
13.1 MB
|
/24 - Evaluating Classification Models Performance/
|
001 Logistic Regression Interpreting Predictions and Errors in Data Science.mp4
|
28.3 MB
|
002 Machine Learning Model Evaluation Accuracy Paradox and Better Metrics.mp4
|
6.2 MB
|
003 Understanding CAP Curves Assessing Model Performance in Data Science 2024.mp4
|
27.2 MB
|
004 Mastering CAP Analysis Assessing Classification Models with Accuracy Ratio.mp4
|
22.3 MB
|
005 Classification-Pros-Cons.pdf
|
30.0 KB
|
005 Conclusion of Part 3 - Classification.html
|
5.7 KB
|
006 Evaluating Classiification Model Performance Quiz.html
|
21.0 KB
|
/25 - -------------------- Part 4 Clustering --------------------/
|
001 Welcome to Part 4 - Clustering.html
|
3.0 KB
|
/26 - K-Means Clustering/
|
001 What is Clustering in Machine Learning Introduction to Unsupervised Learning.mp4
|
16.2 MB
|
002 K-Means Clustering Tutorial Visualizing the Machine Learning Algorithm.mp4
|
5.3 MB
|
003 How to Use the Elbow Method in K-Means Clustering A Step-by-Step Guide.mp4
|
10.2 MB
|
004 K-Means++ Algorithm Solving the Random Initialization Trap in Clustering.mp4
|
13.8 MB
|
005 Step 1a - Python K-Means Tutorial Identifying Customer Patterns in Mall Data.mp4
|
29.8 MB
|
006 Step 1b K-Means Clustering - Data Preparation in Google ColabJupyter.mp4
|
24.4 MB
|
007 Step 2a - K-Means Clustering in Python Selecting Relevant Features for Analysis.mp4
|
21.2 MB
|
008 Step 2b K-Means Clustering - Optimizing Features for 2D Visualization.mp4
|
35.1 MB
|
009 Step 3a - Implementing the Elbow Method for K-Means Clustering in Python.mp4
|
35.5 MB
|
010 Step 3b - Optimizing K-means Clustering WCSS and Elbow Method Implementation.mp4
|
36.0 MB
|
011 Step 3c - Plotting the Elbow Method Graph for K-Means Clustering in Python.mp4
|
15.1 MB
|
012 Step 4 - Creating a Dependent Variable from K-Means Clustering Results in Python.mp4
|
25.9 MB
|
013 Step 5a Visualizing K-Means Clusters of Customer Data with Python Scatter.mp4
|
44.8 MB
|
014 Step 5b - Visualizing K-Means Clusters Plotting Customer Segments in Python.mp4
|
37.5 MB
|
015 Step 5c - Analyzing Customer Segments Insights from K-means Clustering.mp4
|
58.2 MB
|
016 Step 1 - K-Means Clustering in R Importing & Exploring Segmentation Data.mp4
|
56.5 MB
|
017 Step 2 - K-Means Algorithm Implementation in R Fitting and Analyzing Mall Data.mp4
|
70.8 MB
|
018 K-Means Clustering Quiz.html
|
20.7 KB
|
/27 - Hierarchical Clustering/
|
001 How to Perform Hierarchical Clustering Step-by-Step Guide for Machine Learning.mp4
|
38.0 MB
|
002 Visualizing Cluster Dissimilarity Dendrograms in Hierarchical Clustering.mp4
|
29.1 MB
|
003 Mastering Hierarchical Clustering Dendrogram Analysis and Threshold Setting.mp4
|
46.3 MB
|
004 Step 1 - Getting Started with Hierarchical Clustering Data Setup in Python.mp4
|
45.5 MB
|
005 Step 2a - Implementing Hierarchical Clustering Building a Dendrogram with SciPy.mp4
|
17.1 MB
|
006 Step 2b - Visualizing Hierarchical Clustering Dendrogram Basics in Python.mp4
|
38.8 MB
|
007 Step 2c - Interpreting Dendrograms Optimal Clusters in Hierarchical Clustering.mp4
|
85.5 MB
|
008 Step 3a - Building a Hierarchical Clustering Model with Scikit-learn in Python.mp4
|
27.3 MB
|
009 Step 3b - Comparing 3 vs 5 Clusters in Hierarchical Clustering Python Example.mp4
|
34.9 MB
|
010 Step 1 - R Data Import for Clustering Annual Income & Spending Score Analysis.mp4
|
12.9 MB
|
011 Step 2 Using H.clust in R - Building & Interpreting Dendrograms for Clustering.mp4
|
22.2 MB
|
012 Step 3 - Implementing Hierarchical Clustering Using Cat Tree Method in R.mp4
|
35.5 MB
|
013 Step 4 - Cluster Plot Method Visualizing Hierarchical Clustering Results in R.mp4
|
44.8 MB
|
014 Step 5 - Hierarchical Clustering in R Understanding Customer Spending Patterns.mp4
|
27.0 MB
|
015 Hierarchical Clustering Quiz.html
|
20.7 KB
|
016 Clustering-Pros-Cons.pdf
|
26.4 KB
|
016 Conclusion of Part 4 - Clustering.html
|
2.7 KB
|
/28 - -------------------- Part 5 Association Rule Learning --------------------/
|
001 Welcome to Part 5 - Association Rule Learning.html
|
2.8 KB
|
/29 - Apriori/
|
001 Apriori Algorithm Uncovering Hidden Patterns in Data Mining Association Rules.mp4
|
86.1 MB
|
002 Step 1 - Association Rule Learning Boost Sales with Python Data Mining.mp4
|
106.8 MB
|
003 Step 2 - Creating a List of Transactions for Market Basket Analysis in Python.mp4
|
161.0 MB
|
004 Step 3 - Configuring Apriori Function Support, Confidence, and Lift in Python.mp4
|
83.7 MB
|
005 Step 4 Visualizing Apriori Algorithm Results for Product Deals in Python.mp4
|
202.0 MB
|
006 Step 1 - Creating a Sparse Matrix for Association Rule Mining in R.mp4
|
129.8 MB
|
007 Step 2 - Optimizing Apriori Model Choosing Minimum Support and Confidence.mp4
|
170.3 MB
|
008 Step 3 Optimizing Product Placement - Apriori Algorithm, Lift & Confidence.mp4
|
282.7 MB
|
009 Apriori Quiz.html
|
20.8 KB
|
/30 - Eclat/
|
001 Mastering ECLAT Support-Based Approach to Market Basket Optimization.mp4
|
37.2 MB
|
002 Python Tutorial Adapting Apriori to Eclat for Efficient Frequent Itemset Mining.mp4
|
96.0 MB
|
003 Eclat vs Apriori Simplified Association Rule Learning in Data Mining.mp4
|
115.6 MB
|
003 Eclat.zip
|
49.7 KB
|
004 Eclat Quiz.html
|
20.6 KB
|
/31 - -------------------- Part 6 Reinforcement Learning --------------------/
|
001 Welcome to Part 6 - Reinforcement Learning.html
|
3.8 KB
|
/32 - Upper Confidence Bound (UCB)/
|
001 Multi-Armed Bandit Exploration vs Exploitation in Reinforcement Learning.mp4
|
105.9 MB
|
002 Upper Confidence Bound Algorithm Solving Multi-Armed Bandit Problems in ML.mp4
|
87.0 MB
|
003 Step 1 - Upper Confidence Bound Solving Multi-Armed Bandit Problem in Python.mp4
|
69.7 MB
|
004 Step 2 Implementing UCB Algorithm in Python - Data Preparation.mp4
|
14.4 MB
|
005 Step 3 - Python Code for Upper Confidence Bound Setting Up Key Variables.mp4
|
30.2 MB
|
006 Step 4 - Python for RL Coding the UCB Algorithm Step-by-Step.mp4
|
67.5 MB
|
007 Step 5 - Coding Upper Confidence Bound Optimizing Ad Selection in Python.mp4
|
23.0 MB
|
008 Step 6 - Reinforcement Learning Finalizing UCB Algorithm in Python.mp4
|
37.5 MB
|
009 Step 7 - Visualizing UCB Algorithm Results Histogram Analysis in Python.mp4
|
33.6 MB
|
010 Step 1 - Exploring Upper Confidence Bound in R Multi-Armed Bandit Problems.mp4
|
59.8 MB
|
011 Step 2 - UCB Algorithm in R Calculating Average Reward & Confidence Interval.mp4
|
128.0 MB
|
012 Step 3 Optimizing Ad Selection - UCB & Multi-Armed Bandit Algorithm Explained.mp4
|
208.9 MB
|
013 Step 4 - UCB Algorithm Performance Analyzing Ad Selection with Histograms.mp4
|
19.2 MB
|
014 Upper Confidence Bound Quiz.html
|
20.7 KB
|
/33 - Thompson Sampling/
|
001 Understanding Thompson Sampling Algorithm Intuition and Implementation.mp4
|
84.2 MB
|
002 Deterministic vs Probabilistic UCB and Thompson Sampling in Machine Learning.mp4
|
25.2 MB
|
003 Step 1 - Python Implementation of Thompson Sampling for Bandit Problems.mp4
|
24.7 MB
|
004 Step 2 - Optimizing Ad Selection with Thompson Sampling Algorithm in Python.mp4
|
62.7 MB
|
005 Step 3 - Python Code for Thompson Sampling Maximizing Random Beta Distributions.mp4
|
65.6 MB
|
006 Step 4 - Beating UCB with Thompson Sampling Python Multi-Armed Bandit Tutorial.mp4
|
34.1 MB
|
007 Additional Resource for this Section.html
|
4.6 KB
|
008 Step 1 - Thompson Sampling vs UCB Optimizing Ad Click-Through Rates in R.mp4
|
104.2 MB
|
009 Step 2 - Reinforcement Learning Thompson Sampling Outperforms UCB Algorithm.mp4
|
17.3 MB
|
010 Thompson Sampling Quiz.html
|
20.7 KB
|
/34 - -------------------- Part 7 Natural Language Processing --------------------/
|
001 Welcome to Part 7 - Natural Language Processing.html
|
4.1 KB
|
002 NLP Basics Understanding Bag of Words and Its Applications in Machine Learning.mp4
|
8.0 MB
|
003 Deep NLP & Sequence-to-Sequence Models Exploring Natural Language Processing.mp4
|
12.9 MB
|
004 From IfElse Rules to CNNs Evolution of Natural Language Processing.mp4
|
72.5 MB
|
005 Implementing Bag of Words in NLP A Step-by-Step Tutorial.mp4
|
62.8 MB
|
006 Step 1 - Getting Started with Natural Language Processing Sentiment Analysis.mp4
|
23.8 MB
|
007 Step 2 - Importing TSV Data for Sentiment Analysis Python NLP Data Processing.mp4
|
61.3 MB
|
008 Step 3 - Text Cleaning for NLP Remove Punctuation and Convert to Lowercase.mp4
|
45.0 MB
|
009 Step 4 - Text Preprocessing Stemming and Stop Word Removal for NLP in Python.mp4
|
58.2 MB
|
010 Step 5 - Tokenization and Feature Extraction for Naive Bayes Sentiment Analysis.mp4
|
62.9 MB
|
011 Step 6 - Training and Evaluating a Naive Bayes Classifier for Sentiment Analysis.mp4
|
47.4 MB
|
012 Natural Language Processing in Python - EXTRA.html
|
3.4 KB
|
013 Homework Challenge.html
|
3.6 KB
|
014 Step 1 - Text Classification Using Bag-of-Words and Random Forest in R.mp4
|
88.6 MB
|
015 Warning - Update.html
|
3.0 KB
|
016 Step 2 - NLP Data Preprocessing in R Importing TSV Files for Sentiment Analysis.mp4
|
42.3 MB
|
017 Step 3 - NLP in R Initialising a Corpus for Sentiment Analysis.mp4
|
33.6 MB
|
018 Step 4 - NLP Data Cleaning Lowercase Transformation in R for Text Analysis.mp4
|
15.9 MB
|
019 Step 5 - Sentiment Analysis Data Cleaning Removing Numbers with TM Map.mp4
|
11.0 MB
|
020 Step 6 - Cleaning Text Data Removing Punctuation for NLP and Classification.mp4
|
31.1 MB
|
021 Step 7 - Simplifying Corpus Using SnowballC Package to Remove Stop Words in R.mp4
|
18.8 MB
|
022 Step 8 - Enhancing Text Classification Stemming for Efficient Feature Matrices.mp4
|
29.9 MB
|
023 Step 9 Removing Extra Spaces for NLP Sentiment Analysis Text Cleaning.mp4
|
92.8 MB
|
024 Step 10 - Building a Document-Term Matrix for NLP Text Classification.mp4
|
122.6 MB
|
025 Homework Challenge.html
|
3.7 KB
|
026 Natural Language Processing Quiz.html
|
20.6 KB
|
/35 - -------------------- Part 8 Deep Learning --------------------/
|
001 Welcome to Part 8 - Deep Learning.html
|
3.2 KB
|
002 Introduction to Deep Learning From Historical Context to Modern Applications.mp4
|
186.9 MB
|
003 Deep Learning Quiz.html
|
20.7 KB
|
/36 - Artificial Neural Networks/
|
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4
|
7.2 MB
|
002 Deep Learning Basics Exploring Neurons, Synapses, and Activation Functions.mp4
|
67.4 MB
|
003 Neural Network Basics Understanding Activation Functions in Deep Learning.mp4
|
25.4 MB
|
004 How Do Neural Networks Work Step-by-Step Guide to Deep Learning Algorithms.mp4
|
52.7 MB
|
005 How Do Neural Networks Learn Deep Learning Fundamentals Explained.mp4
|
82.6 MB
|
006 Deep Learning Fundamentals Gradient Descent vs Brute Force Optimization.mp4
|
40.5 MB
|
007 Stochastic vs Batch Gradient Descent Deep Learning Fundamentals.mp4
|
50.4 MB
|
008 Deep Learning Fundamentals Training Neural Networks Step-by-Step.mp4
|
29.7 MB
|
009 Bank Customer Churn Prediction Machine Learning Model with TensorFlow.mp4
|
71.8 MB
|
010 Step 1 ANN in Python Predicting Customer Churn with TensorFlow.mp4
|
98.5 MB
|
011 Step 2 - TensorFlow 2.0 Tutorial Preprocessing Data for Customer Churn Model.mp4
|
164.8 MB
|
012 Step 3 - Designing ANN Sequential Model & Dense Layers for Deep Learning.mp4
|
70.7 MB
|
013 Step 4 - Train Neural Network Compile & Fit for Customer Churn Prediction.mp4
|
51.3 MB
|
014 Step 5 - Implementing ANN for Churn Prediction From Model to Confusion Matrix.mp4
|
125.7 MB
|
015 Step 1 - How to Preprocess Data for Artificial Neural Networks in R.mp4
|
239.3 MB
|
016 Step 2 - How to Install and Initialize H2O for Efficient Deep Learning in R.mp4
|
45.9 MB
|
017 Step 3 Building Deep Learning Model - H2O Neural Network Layer Config.mp4
|
212.7 MB
|
018 Step 4 - H2O Deep Learning Making Predictions and Evaluating Model Accuracy.mp4
|
177.5 MB
|
019 Deep Learning Additional Content.html
|
3.3 KB
|
020 EXTRA CONTENT ANN Case Study.html
|
2.8 KB
|
021 ANN QUIZ.html
|
20.6 KB
|
/37 - Convolutional Neural Networks/
|
001 dataset.zip
|
232.0 MB
|
001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4
|
9.5 MB
|
002 Introduction to CNNs Understanding Deep Learning for Computer Vision.mp4
|
111.8 MB
|
003 Step 1 - Understanding Convolution in CNNs Feature Detection and Feature Maps.mp4
|
96.6 MB
|
004 Step 1b - Applying ReLU to Convolutional Layers Breaking Up Image Linearity.mp4
|
32.8 MB
|
005 Step 2 - Max Pooling in CNNs Enhancing Spatial Invariance for Image Recognition.mp4
|
146.6 MB
|
006 Step 3 - Understanding Flattening in Convolutional Neural Network Architecture.mp4
|
4.5 MB
|
007 Step 4 - Fully Connected Layers in CNNs Optimizing Feature Combination.mp4
|
104.2 MB
|
008 Deep Learning Basics How Convolutional Neural Networks (CNNs) Process Images.mp4
|
17.5 MB
|
009 Deep Learning Essentials Understanding Softmax and Cross-Entropy in CNNs.mp4
|
79.3 MB
|
010 dataset.zip
|
232.4 MB
|
010 Make sure you have your dataset ready.html
|
3.1 KB
|
011 Step 1 Intro to CNNs for Image Classification.mp4
|
53.6 MB
|
012 Step 2 - Keras ImageDataGenerator Prevent Overfitting in CNN Models.mp4
|
183.5 MB
|
013 Step 3 - TensorFlow CNN Convolution to Output Layer for Vision Tasks.mp4
|
106.9 MB
|
014 Step 4 CNN Training - Epochs, Loss Function & Metrics in TensorFlow.mp4
|
36.8 MB
|
015 Step 5 - Making Single Predictions with Convolutional Neural Networks in Python.mp4
|
123.3 MB
|
016 Hands-on CNN Training Using Jupyter Notebook for Image Classification.mp4
|
195.6 MB
|
017 Deep Learning Additional Content #2.html
|
3.2 KB
|
018 CNN Quiz.html
|
20.6 KB
|
/38 - -------------------- Part 9 Dimensionality Reduction --------------------/
|
001 Welcome to Part 9 - Dimensionality Reduction.html
|
3.5 KB
|
/39 - Principal Component Analysis (PCA)/
|
001 PCA Algorithm Intuition Reducing Dimensions in Unsupervised Learning.mp4
|
38.4 MB
|
002 Step 1 PCA in Python Reducing Wine Dataset Features with Scikit-learn.mp4
|
167.6 MB
|
003 Step 2 - PCA in Action Reducing Dimensions and Predicting Customer Segments.mp4
|
50.7 MB
|
004 Step 1 in R - Understanding Principal Component Analysis for Feature Extraction.mp4
|
58.3 MB
|
005 Step 2 - Using preProcess Function in R for PCA Extracting Principal Components.mp4
|
86.8 MB
|
006 Step 3 - Implementing PCA and SVM for Customer Segmentation Practical Guide.mp4
|
120.1 MB
|
007 PCA Quiz.html
|
20.7 KB
|
/40 - Linear Discriminant Analysis (LDA)/
|
001 LDA Intuition Maximizing Class Separation in Machine Learning Algorithms.mp4
|
25.5 MB
|
002 Mastering Linear Discriminant Analysis Step-by-Step Python Implementation.mp4
|
128.9 MB
|
003 Step-by-Step Guide Applying LDA for Feature Extraction in Machine Learning.mp4
|
261.0 MB
|
004 LDA Quiz.html
|
20.7 KB
|
/
|
XiPCuLT.nfo
|
6.2 KB
|
/42 - -------------------- Part 10 Model Selection & Boosting --------------------/
|
001 Welcome to Part 10 - Model Selection & Boosting.html
|
3.2 KB
|
/43 - Model Selection/
|
001 Mastering Model Evaluation K-Fold Cross-Validation Techniques Explained.mp4
|
114.3 MB
|
002 How to Master the Bias-Variance Tradeoff in Machine Learning Models.mp4
|
38.1 MB
|
003 K-Fold Cross-Validation in Python Improve Machine Learning Model Performance.mp4
|
111.9 MB
|
004 Optimizing SVM Models with GridSearchCV A Step-by-Step Python Tutorial.mp4
|
197.0 MB
|
005 Evaluating ML Model Accuracy K-Fold Cross-Validation Implementation in R.mp4
|
255.5 MB
|
006 Optimizing SVM Models with Grid Search A Step-by-Step R Tutorial.mp4
|
70.7 MB
|
/44 - XGBoost/
|
001 How to Use XGBoost in Python for Cancer Prediction with High Accuracy.mp4
|
149.8 MB
|
002 Model Selection and Boosting Additional Content.html
|
3.5 KB
|
003 XGBoost Tutorial Implementing Gradient Boosting for Classification Problems.mp4
|
152.2 MB
|
/45 - Annex Logistic Regression (Long Explanation)/
|
001 Logistic Regression Intuition.mp4
|
47.7 MB
|
/46 - Congratulations!! Don't forget your Prize )/
|
001 Huge Congrats for completing the challenge!.html
|
7.1 KB
|
002 Bonus How To UNLOCK Top Salaries (Live Training).html
|
4.1 KB
|
Total files 433
|