/01. Getting Started/
|
5. Activity WINDOWS Installing and Using Anaconda & Course Materials.mp4
|
106.9 MB
|
6. Activity MAC Installing and Using Anaconda & Course Materials.mp4
|
100.4 MB
|
7. Activity LINUX Installing and Using Anaconda & Course Materials.mp4
|
63.1 MB
|
12. Introducing the Pandas Library Optional.mp4
|
46.3 MB
|
8. Python Basics, Part 1 Optional.mp4
|
28.2 MB
|
9. Activity Python Basics, Part 2 Optional.mp4
|
21.6 MB
|
1. Introduction.mp4
|
19.7 MB
|
2. Udemy 101 Getting the Most From This Course.mp4
|
18.2 MB
|
11. Activity Python Basics, Part 4 Optional.mp4
|
6.0 MB
|
10. Activity Python Basics, Part 3 Optional.mp4
|
2.6 MB
|
12. Introducing the Pandas Library Optional.vtt
|
18.6 KB
|
5. Activity WINDOWS Installing and Using Anaconda & Course Materials.vtt
|
17.6 KB
|
7. Activity LINUX Installing and Using Anaconda & Course Materials.vtt
|
15.2 KB
|
6. Activity MAC Installing and Using Anaconda & Course Materials.vtt
|
14.3 KB
|
8. Python Basics, Part 1 Optional.vtt
|
8.1 KB
|
9. Activity Python Basics, Part 2 Optional.vtt
|
8.0 KB
|
11. Activity Python Basics, Part 4 Optional.vtt
|
6.1 KB
|
1. Introduction.vtt
|
5.3 KB
|
10. Activity Python Basics, Part 3 Optional.vtt
|
4.5 KB
|
2. Udemy 101 Getting the Most From This Course.vtt
|
4.2 KB
|
4. Installation Getting Started.html
|
1.2 KB
|
3. Important note.html
|
0.6 KB
|
/02. Statistics and Probability Refresher, and Python Practice/
|
4. Activity Variation and Standard Deviation.mp4
|
108.4 MB
|
9. Activity Advanced Visualization with Seaborn.mp4
|
100.8 MB
|
11. Exercise Conditional Probability.mp4
|
98.5 MB
|
8. Activity A Crash Course in matplotlib.mp4
|
93.0 MB
|
1. Types of Data (Numerical, Categorical, Ordinal).mp4
|
76.7 MB
|
10. Activity Covariance and Correlation.mp4
|
72.9 MB
|
13. Bayes' Theorem.mp4
|
58.8 MB
|
3. Activity Using mean, median, and mode in Python.mp4
|
46.7 MB
|
7. Activity Percentiles and Moments.mp4
|
44.6 MB
|
6. Common Data Distributions (Normal, Binomial, Poisson, etc).mp4
|
29.6 MB
|
2. Mean, Median, Mode.mp4
|
16.7 MB
|
12. Exercise Solution Conditional Probability of Purchase by Age.mp4
|
15.7 MB
|
5. Probability Density Function Probability Mass Function.mp4
|
7.3 MB
|
9. Activity Advanced Visualization with Seaborn.vtt
|
30.3 KB
|
11. Exercise Conditional Probability.vtt
|
28.9 KB
|
7. Activity Percentiles and Moments.vtt
|
22.5 KB
|
10. Activity Covariance and Correlation.vtt
|
20.1 KB
|
4. Activity Variation and Standard Deviation.vtt
|
19.5 KB
|
8. Activity A Crash Course in matplotlib.vtt
|
19.3 KB
|
3. Activity Using mean, median, and mode in Python.vtt
|
16.1 KB
|
6. Common Data Distributions (Normal, Binomial, Poisson, etc).vtt
|
12.3 KB
|
1. Types of Data (Numerical, Categorical, Ordinal).vtt
|
12.3 KB
|
2. Mean, Median, Mode.vtt
|
9.9 KB
|
13. Bayes' Theorem.vtt
|
8.9 KB
|
5. Probability Density Function Probability Mass Function.vtt
|
6.1 KB
|
12. Exercise Solution Conditional Probability of Purchase by Age.vtt
|
4.1 KB
|
/03. Predictive Models/
|
3. Activity Multiple Regression, and Predicting Car Prices.mp4
|
98.7 MB
|
1. Activity Linear Regression.mp4
|
97.5 MB
|
2. Activity Polynomial Regression.mp4
|
63.5 MB
|
4. Multi-Level Models.mp4
|
28.5 MB
|
3. Activity Multiple Regression, and Predicting Car Prices.vtt
|
29.2 KB
|
1. Activity Linear Regression.vtt
|
20.0 KB
|
2. Activity Polynomial Regression.vtt
|
13.5 KB
|
4. Multi-Level Models.vtt
|
8.4 KB
|
/04. Machine Learning with Python/
|
11. Decision Trees Concepts.mp4
|
85.5 MB
|
4. Activity Implementing a Spam Classifier with Naive Bayes.mp4
|
85.3 MB
|
14. Activity XGBoost.mp4
|
83.1 MB
|
12. Activity Decision Trees Predicting Hiring Decisions.mp4
|
60.6 MB
|
1. Supervised vs. Unsupervised Learning, and TrainTest.mp4
|
59.4 MB
|
16. Activity Using SVM to cluster people using scikit-learn.mp4
|
40.4 MB
|
13. Ensemble Learning.mp4
|
38.8 MB
|
5. K-Means Clustering.mp4
|
27.3 MB
|
6. Activity Clustering people based on income and age.mp4
|
23.1 MB
|
2. Activity Using TrainTest to Prevent Overfitting a Polynomial Regression.mp4
|
22.7 MB
|
15. Support Vector Machines (SVM) Overview.mp4
|
17.1 MB
|
7. Measuring Entropy.mp4
|
12.7 MB
|
3. Bayesian Methods Concepts.mp4
|
10.3 MB
|
9. Activity MAC Installing Graphviz.mp4
|
9.5 MB
|
10. Activity LINUX Installing Graphviz.mp4
|
2.6 MB
|
8. Activity WINDOWS Installing Graphviz.mp4
|
972.1 KB
|
14. Activity XGBoost.vtt
|
28.7 KB
|
12. Activity Decision Trees Predicting Hiring Decisions.vtt
|
17.1 KB
|
16. Activity Using SVM to cluster people using scikit-learn.vtt
|
17.1 KB
|
1. Supervised vs. Unsupervised Learning, and TrainTest.vtt
|
16.5 KB
|
11. Decision Trees Concepts.vtt
|
15.9 KB
|
4. Activity Implementing a Spam Classifier with Naive Bayes.vtt
|
14.0 KB
|
5. K-Means Clustering.vtt
|
13.3 KB
|
13. Ensemble Learning.vtt
|
10.9 KB
|
2. Activity Using TrainTest to Prevent Overfitting a Polynomial Regression.vtt
|
10.2 KB
|
6. Activity Clustering people based on income and age.vtt
|
9.4 KB
|
15. Support Vector Machines (SVM) Overview.vtt
|
8.1 KB
|
3. Bayesian Methods Concepts.vtt
|
7.0 KB
|
7. Measuring Entropy.vtt
|
5.5 KB
|
9. Activity MAC Installing Graphviz.vtt
|
1.5 KB
|
10. Activity LINUX Installing Graphviz.vtt
|
1.2 KB
|
8. Activity WINDOWS Installing Graphviz.vtt
|
0.7 KB
|
/05. Recommender Systems/
|
5. Activity Making Movie Recommendations with Item-Based Collaborative Filtering.mp4
|
130.1 MB
|
3. Activity Finding Movie Similarities using Cosine Similarity.mp4
|
86.7 MB
|
1. User-Based Collaborative Filtering.mp4
|
85.7 MB
|
4. Activity Improving the Results of Movie Similarities.mp4
|
58.8 MB
|
6. Exercise Improve the recommender's results.mp4
|
29.4 MB
|
2. Item-Based Collaborative Filtering.mp4
|
24.3 MB
|
5. Activity Making Movie Recommendations with Item-Based Collaborative Filtering.vtt
|
17.3 KB
|
3. Activity Finding Movie Similarities using Cosine Similarity.vtt
|
15.3 KB
|
2. Item-Based Collaborative Filtering.vtt
|
15.2 KB
|
1. User-Based Collaborative Filtering.vtt
|
14.8 KB
|
4. Activity Improving the Results of Movie Similarities.vtt
|
13.7 KB
|
6. Exercise Improve the recommender's results.vtt
|
10.4 KB
|
/06. More Data Mining and Machine Learning Techniques/
|
6. Reinforcement Learning.mp4
|
131.3 MB
|
2. Activity Using KNN to predict a rating for a movie.mp4
|
89.7 MB
|
4. Activity PCA Example with the Iris data set.mp4
|
69.0 MB
|
7. Activity Reinforcement Learning & Q-Learning with Gym.mp4
|
65.8 MB
|
5. Data Warehousing Overview ETL and ELT.mp4
|
61.6 MB
|
3. Dimensionality Reduction Principal Component Analysis (PCA).mp4
|
40.0 MB
|
1. K-Nearest-Neighbors Concepts.mp4
|
14.7 MB
|
9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).mp4
|
12.2 MB
|
8. Understanding a Confusion Matrix.mp4
|
7.7 MB
|
7. Activity Reinforcement Learning & Q-Learning with Gym.vtt
|
22.5 KB
|
6. Reinforcement Learning.vtt
|
21.5 KB
|
2. Activity Using KNN to predict a rating for a movie.vtt
|
20.5 KB
|
5. Data Warehousing Overview ETL and ELT.vtt
|
15.3 KB
|
4. Activity PCA Example with the Iris data set.vtt
|
15.3 KB
|
9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).vtt
|
10.9 KB
|
8. Understanding a Confusion Matrix.vtt
|
9.9 KB
|
3. Dimensionality Reduction Principal Component Analysis (PCA).vtt
|
9.9 KB
|
1. K-Nearest-Neighbors Concepts.vtt
|
6.7 KB
|
/07. Dealing with Real-World Data/
|
3. Data Cleaning and Normalization.mp4
|
76.6 MB
|
2. Activity K-Fold Cross-Validation to avoid overfitting.mp4
|
59.7 MB
|
10. Binning, Transforming, Encoding, Scaling, and Shuffling.mp4
|
44.8 MB
|
4. Activity Cleaning web log data.mp4
|
32.5 MB
|
6. Activity Detecting outliers.mp4
|
28.5 MB
|
1. BiasVariance Tradeoff.mp4
|
24.8 MB
|
8. Imputation Techniques for Missing Data.mp4
|
19.1 MB
|
9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.mp4
|
18.3 MB
|
7. Feature Engineering and the Curse of Dimensionality.mp4
|
15.3 MB
|
5. Normalizing numerical data.mp4
|
10.8 MB
|
4. Activity Cleaning web log data.vtt
|
18.5 KB
|
2. Activity K-Fold Cross-Validation to avoid overfitting.vtt
|
17.6 KB
|
8. Imputation Techniques for Missing Data.vtt
|
14.7 KB
|
10. Binning, Transforming, Encoding, Scaling, and Shuffling.vtt
|
14.4 KB
|
3. Data Cleaning and Normalization.vtt
|
13.7 KB
|
7. Feature Engineering and the Curse of Dimensionality.vtt
|
11.9 KB
|
6. Activity Detecting outliers.vtt
|
11.4 KB
|
1. BiasVariance Tradeoff.vtt
|
10.9 KB
|
9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.vtt
|
10.1 KB
|
5. Normalizing numerical data.vtt
|
6.2 KB
|
/08. Apache Spark Machine Learning on Big Data/
|
3. Activity Installing Spark.mp4
|
148.2 MB
|
7. Introduction to Decision Trees in Spark.mp4
|
140.5 MB
|
8. Activity K-Means Clustering in Spark.mp4
|
121.8 MB
|
10. Activity Searching Wikipedia with Spark.mp4
|
88.1 MB
|
9. TF IDF.mp4
|
68.9 MB
|
11. Activity Using the Spark DataFrame API for MLLib.mp4
|
68.3 MB
|
4. Spark Introduction.mp4
|
26.2 MB
|
5. Spark and the Resilient Distributed Dataset (RDD).mp4
|
23.4 MB
|
6. Introducing MLLib.mp4
|
15.4 MB
|
7. Introduction to Decision Trees in Spark.vtt
|
28.2 KB
|
5. Spark and the Resilient Distributed Dataset (RDD).vtt
|
20.5 KB
|
3. Activity Installing Spark.vtt
|
18.0 KB
|
8. Activity K-Means Clustering in Spark.vtt
|
18.0 KB
|
4. Spark Introduction.vtt
|
16.3 KB
|
10. Activity Searching Wikipedia with Spark.vtt
|
13.2 KB
|
11. Activity Using the Spark DataFrame API for MLLib.vtt
|
13.2 KB
|
9. TF IDF.vtt
|
11.3 KB
|
6. Introducing MLLib.vtt
|
8.9 KB
|
2. Spark installation notes for MacOS and Linux users.html
|
3.2 KB
|
1. Warning about Java 21+ and Spark 3!.html
|
1.1 KB
|
/09. Experimental Design ML in the Real World/
|
6. AB Test Gotchas.mp4
|
96.2 MB
|
4. Activity Hands-on With T-Tests.mp4
|
50.1 MB
|
2. AB Testing Concepts.mp4
|
33.6 MB
|
1. Deploying Models to Real-Time Systems.mp4
|
18.1 MB
|
3. T-Tests and P-Values.mp4
|
14.8 MB
|
5. Determining How Long to Run an Experiment.mp4
|
10.2 MB
|
6. AB Test Gotchas.vtt
|
17.7 KB
|
1. Deploying Models to Real-Time Systems.vtt
|
16.1 KB
|
2. AB Testing Concepts.vtt
|
15.9 KB
|
4. Activity Hands-on With T-Tests.vtt
|
10.6 KB
|
3. T-Tests and P-Values.vtt
|
10.5 KB
|
5. Determining How Long to Run an Experiment.vtt
|
6.6 KB
|
/10. Deep Learning and Neural Networks/
|
17. The Ethics of Deep Learning.mp4
|
126.4 MB
|
14. Activity Transfer Learning.mp4
|
116.4 MB
|
6. Activity Using Tensorflow, Part 1.mp4
|
112.9 MB
|
7. Activity Using Tensorflow, Part 2.mp4
|
99.7 MB
|
13. Activity Using a RNN for sentiment analysis.mp4
|
77.1 MB
|
8. Activity Introducing Keras.mp4
|
75.5 MB
|
1. Deep Learning Pre-Requisites.mp4
|
73.8 MB
|
2. The History of Artificial Neural Networks.mp4
|
72.2 MB
|
9. Activity Using Keras to Predict Political Affiliations.mp4
|
70.1 MB
|
10. Convolutional Neural Networks (CNN's).mp4
|
61.6 MB
|
3. Activity Deep Learning in the Tensorflow Playground.mp4
|
58.4 MB
|
11. Activity Using CNN's for handwriting recognition.mp4
|
55.4 MB
|
5. Introducing Tensorflow.mp4
|
48.9 MB
|
12. Recurrent Neural Networks (RNN's).mp4
|
34.4 MB
|
4. Deep Learning Details.mp4
|
32.4 MB
|
16. Deep Learning Regularization with Dropout and Early Stopping.mp4
|
20.8 MB
|
15. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.mp4
|
8.9 MB
|
8. Activity Introducing Keras.vtt
|
24.3 KB
|
6. Activity Using Tensorflow, Part 1.vtt
|
23.5 KB
|
1. Deep Learning Pre-Requisites.vtt
|
22.2 KB
|
5. Introducing Tensorflow.vtt
|
22.2 KB
|
9. Activity Using Keras to Predict Political Affiliations.vtt
|
21.5 KB
|
14. Activity Transfer Learning.vtt
|
21.4 KB
|
10. Convolutional Neural Networks (CNN's).vtt
|
21.3 KB
|
7. Activity Using Tensorflow, Part 2.vtt
|
21.1 KB
|
17. The Ethics of Deep Learning.vtt
|
21.1 KB
|
2. The History of Artificial Neural Networks.vtt
|
20.5 KB
|
3. Activity Deep Learning in the Tensorflow Playground.vtt
|
20.3 KB
|
12. Recurrent Neural Networks (RNN's).vtt
|
19.6 KB
|
4. Deep Learning Details.vtt
|
17.9 KB
|
13. Activity Using a RNN for sentiment analysis.vtt
|
17.5 KB
|
11. Activity Using CNN's for handwriting recognition.vtt
|
14.3 KB
|
16. Deep Learning Regularization with Dropout and Early Stopping.vtt
|
11.9 KB
|
15. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.vtt
|
8.8 KB
|
/11. Generative Models/
|
2. Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST.mp4
|
156.1 MB
|
5. Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST.mp4
|
132.2 MB
|
4. Generative Adversarial Networks (GAN's) - Playing with some demos.mp4
|
92.9 MB
|
1. Variational Auto-Encoders (VAE's) - how they work.mp4
|
45.0 MB
|
6. Learning More about Deep Learning.mp4
|
21.2 MB
|
3. Generative Adversarial Networks (GAN's) - How they work.mp4
|
16.0 MB
|
5. GAN_on_Fashion_MNIST.ipynb
|
3.9 MB
|
2. VariationalAutoEncoders.ipynb
|
1.4 MB
|
2. Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST.vtt
|
46.4 KB
|
5. Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST.vtt
|
27.5 KB
|
4. Generative Adversarial Networks (GAN's) - Playing with some demos.vtt
|
18.5 KB
|
1. Variational Auto-Encoders (VAE's) - how they work.vtt
|
18.5 KB
|
3. Generative Adversarial Networks (GAN's) - How they work.vtt
|
13.6 KB
|
6. Learning More about Deep Learning.vtt
|
3.3 KB
|
/12. Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/
|
11. Activity Fine Tuning GPT with the IMDb dataset.mp4
|
89.3 MB
|
10. Activity Using small and large GPT models within Google CoLab and HuggingFace.mp4
|
72.4 MB
|
7. Activity Tokenization with Google CoLab and HuggingFace.mp4
|
71.0 MB
|
12. From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients.mp4
|
53.6 MB
|
2. Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth.mp4
|
43.5 MB
|
9. Activity Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT.mp4
|
31.9 MB
|
4. How GPT Works, Part 1 The GPT Transformer Architecture.mp4
|
31.7 MB
|
13. From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation.mp4
|
29.9 MB
|
1. The Transformer Architecture (encoders, decoders, and self-attention.).mp4
|
20.7 MB
|
5. How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding.mp4
|
15.5 MB
|
3. Applications of Transformers (GPT).mp4
|
10.0 MB
|
7. Transformers_MLCourse.ipynb
|
7.0 MB
|
8. Activity Positional Encoding.mp4
|
6.8 MB
|
6. Fine Tuning Transfer Learning with Transformers.mp4
|
5.3 MB
|
1. The Transformer Architecture (encoders, decoders, and self-attention.).vtt
|
19.0 KB
|
2. Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth.vtt
|
18.4 KB
|
7. Activity Tokenization with Google CoLab and HuggingFace.vtt
|
15.8 KB
|
4. How GPT Works, Part 1 The GPT Transformer Architecture.vtt
|
13.6 KB
|
12. From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients.vtt
|
13.6 KB
|
11. Activity Fine Tuning GPT with the IMDb dataset.vtt
|
11.4 KB
|
13. From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation.vtt
|
10.9 KB
|
9. Activity Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT.vtt
|
10.8 KB
|
10. Activity Using small and large GPT models within Google CoLab and HuggingFace.vtt
|
9.2 KB
|
5. How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding.vtt
|
9.2 KB
|
3. Applications of Transformers (GPT).vtt
|
8.7 KB
|
6. Fine Tuning Transfer Learning with Transformers.vtt
|
4.7 KB
|
8. Activity Positional Encoding.vtt
|
3.7 KB
|
/13. The OpenAI API (Developing with GPT and ChatGPT)/
|
7. The New OpenAI Fine-Tuning API Fine-Tuning GPT-3.5 to simulate Commander Data!.mp4
|
334.5 MB
|
6. Demo Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek.mp4
|
174.6 MB
|
2. Activity Using Tools and Functions in the OpenAI Chat Completion API.mp4
|
85.1 MB
|
1. Activity The OpenAI Chat Completions API.mp4
|
68.6 MB
|
4. Activity The Embeddings API in OpenAI Finding similarities between words.mp4
|
30.4 MB
|
3. Activity The Images (DALL-E) API in OpenAI.mp4
|
27.0 MB
|
8. Activity The OpenAI Moderation API.mp4
|
17.0 MB
|
9. Activity The OpenAI Audio API (speech to text).mp4
|
13.6 MB
|
5. The Legacy Fine-Tuning API for GPT Models in OpenAI.mp4
|
12.2 MB
|
7. The New OpenAI Fine-Tuning API Fine-Tuning GPT-3.5 to simulate Commander Data!.vtt
|
38.8 KB
|
6. Demo Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek.vtt
|
30.1 KB
|
1. Activity The OpenAI Chat Completions API.vtt
|
21.1 KB
|
2. Activity Using Tools and Functions in the OpenAI Chat Completion API.vtt
|
18.3 KB
|
7. MakingData.ipynb
|
13.9 KB
|
4. Activity The Embeddings API in OpenAI Finding similarities between words.vtt
|
11.4 KB
|
5. The Legacy Fine-Tuning API for GPT Models in OpenAI.vtt
|
9.8 KB
|
3. Activity The Images (DALL-E) API in OpenAI.vtt
|
7.5 KB
|
9. Activity The OpenAI Audio API (speech to text).vtt
|
7.0 KB
|
8. Activity The OpenAI Moderation API.vtt
|
5.2 KB
|
2. Functions.py
|
3.5 KB
|
6. extract-script.py
|
1.9 KB
|
1. Chat-Completions.py
|
1.2 KB
|
4. Embedding.py
|
1.0 KB
|
3. Image.py
|
0.7 KB
|
9. Audio.py
|
0.4 KB
|
8. Moderation.py
|
0.2 KB
|
/14. Retrieval Augmented Generation (RAG,) Advanced RAG, and LLM Agents/
|
4. Activity Evaluating our RAG-based Cdr. Data using RAGAS and langchain.mp4
|
283.9 MB
|
8. Activity Simulating Cdr. Data with Advanced RAG and langchain.mp4
|
277.3 MB
|
10. Activity Building a Cdr. Data chatbot with LLM Agents, web search & math tools.mp4
|
276.6 MB
|
1. Retrieval Augmented Generation (RAG) How it works, with some examples.mp4
|
97.4 MB
|
2. Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek.mp4
|
76.0 MB
|
5. Advanced RAG Pre-Retrieval chunking semantic chunking data extraction.mp4
|
30.9 MB
|
3. RAG Metrics The RAG Triad, relevancy, recall, precision, accuracy, and more.mp4
|
26.3 MB
|
9. LLM Agents and Swarms of Agents.mp4
|
25.9 MB
|
7. Advanced RAG Prompt Compression, and More Tuning Opportunities.mp4
|
22.5 MB
|
6. Advanced RAG Query Rewriting.mp4
|
8.5 MB
|
8. Data_Advanced_RAG.ipynb
|
781.9 KB
|
2. Data_RAG.ipynb
|
102.8 KB
|
10. Data_Agent.ipynb
|
85.3 KB
|
4. Data_RAG_Metrics.ipynb
|
73.7 KB
|
2. Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek.vtt
|
34.3 KB
|
4. Activity Evaluating our RAG-based Cdr. Data using RAGAS and langchain.vtt
|
32.1 KB
|
1. Retrieval Augmented Generation (RAG) How it works, with some examples.vtt
|
31.6 KB
|
10. Activity Building a Cdr. Data chatbot with LLM Agents, web search & math tools.vtt
|
29.0 KB
|
8. Activity Simulating Cdr. Data with Advanced RAG and langchain.vtt
|
28.3 KB
|
3. RAG Metrics The RAG Triad, relevancy, recall, precision, accuracy, and more.vtt
|
20.1 KB
|
5. Advanced RAG Pre-Retrieval chunking semantic chunking data extraction.vtt
|
14.8 KB
|
7. Advanced RAG Prompt Compression, and More Tuning Opportunities.vtt
|
10.8 KB
|
9. LLM Agents and Swarms of Agents.vtt
|
10.0 KB
|
6. Advanced RAG Query Rewriting.vtt
|
7.3 KB
|
/15. Final Project/
|
2. Final project review.mp4
|
67.6 MB
|
1. Your final project assignment Mammogram Classification.mp4
|
54.1 MB
|
2. Final project review.vtt
|
18.9 KB
|
1. Your final project assignment Mammogram Classification.vtt
|
12.3 KB
|
/16. You made it!/
|
1. More to Explore.mp4
|
35.6 MB
|
3. 2019-04-08_18-15-28-b861b8ffb2406e3f70aad5871e4e91ff.png
|
135.8 KB
|
3. 2019-04-08_17-55-57-bcf2d7bf9cef514f135511b184f77e48.png
|
135.6 KB
|
3. 2019-04-08_18-17-01-1a5b2a5d579cfb42118eaf525e7a7b83.png
|
130.7 KB
|
3. 2019-04-08_18-17-59-492c9dc76de5ed12f532ead3e609f148.png
|
129.8 KB
|
3. 2019-04-08_18-01-48-cf6d9b7536a1e4a75438299681428036.png
|
124.7 KB
|
3. 2019-04-08_18-03-42-4930e7b3a27d368a568d97fd8c959359.png
|
124.3 KB
|
3. 2019-04-08_18-19-48-5bc03a831100a771082c4245e271a4b0.png
|
117.4 KB
|
3. 2019-04-08_18-04-33-85f2594b9a584964a59514617b27f95b.png
|
114.3 KB
|
3. 2019-05-14_17-14-40-e1d4913408ac3d0f1eaad1a80705cf5b.png
|
104.7 KB
|
3. 2019-04-08_18-20-39-de5ee610f1e6e8e483229fd1c9d7e998.png
|
95.1 KB
|
3. 2024-07-26_12-45-38-32f4df5ac9105153f0fd5c7fdab93d89.png
|
94.6 KB
|
3. 2022-07-23_11-27-36-c40b770315b5187e58bca3c2542ee3b4.png
|
85.5 KB
|
3. 2024-08-19_12-50-25-5160f601d41d2a72d06a9c0d700cad51.png
|
85.1 KB
|
3. 2021-10-16_12-16-09-e3dd0e05ba917baf745a42fc35a0cbb2.jpg
|
72.3 KB
|
3. 2022-04-18_13-12-40-afb201ce74196d83694608d7fc39a43e.png
|
61.5 KB
|
3. 2019-04-08_18-21-33-2ee7f2d5dff7cccfd9f4103899aa6cc0.png
|
61.0 KB
|
3. 2019-04-08_19-24-33-63d41c7c27f7ed6e9ca0e1072e6c2751.jpg
|
46.6 KB
|
3. 2024-08-06_13-32-36-7f6c6c13c6b331d2282e71ed3e362b48.jpg
|
32.6 KB
|
3. 2019-10-23_18-48-57-9fb797c585d7195417eca364a27b07c9.jpg
|
24.3 KB
|
3. Bonus Lecture.html
|
11.3 KB
|
1. More to Explore.vtt
|
5.8 KB
|
2. Don't Forget to Leave a Rating!.html
|
0.6 KB
|
Total files 322
|