FileMood

Download Udemy - Machine Learning, Data Science and Generative AI with Python (1.2025)

Udemy Machine Learning Data Science and Generative AI with Python 2025

Name

Udemy - Machine Learning, Data Science and Generative AI with Python (1.2025)

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

8.4 GB

Total Files

322

Last Seen

2025-06-21 01:58

Hash

9B004AF67BC1AADF759B350DCCF81FA0692E5EDE

/01. Getting Started/

5. Activity WINDOWS Installing and Using Anaconda & Course Materials.mp4

106.9 MB

6. Activity MAC Installing and Using Anaconda & Course Materials.mp4

100.4 MB

7. Activity LINUX Installing and Using Anaconda & Course Materials.mp4

63.1 MB

12. Introducing the Pandas Library Optional.mp4

46.3 MB

8. Python Basics, Part 1 Optional.mp4

28.2 MB

9. Activity Python Basics, Part 2 Optional.mp4

21.6 MB

1. Introduction.mp4

19.7 MB

2. Udemy 101 Getting the Most From This Course.mp4

18.2 MB

11. Activity Python Basics, Part 4 Optional.mp4

6.0 MB

10. Activity Python Basics, Part 3 Optional.mp4

2.6 MB

12. Introducing the Pandas Library Optional.vtt

18.6 KB

5. Activity WINDOWS Installing and Using Anaconda & Course Materials.vtt

17.6 KB

7. Activity LINUX Installing and Using Anaconda & Course Materials.vtt

15.2 KB

6. Activity MAC Installing and Using Anaconda & Course Materials.vtt

14.3 KB

8. Python Basics, Part 1 Optional.vtt

8.1 KB

9. Activity Python Basics, Part 2 Optional.vtt

8.0 KB

11. Activity Python Basics, Part 4 Optional.vtt

6.1 KB

1. Introduction.vtt

5.3 KB

10. Activity Python Basics, Part 3 Optional.vtt

4.5 KB

2. Udemy 101 Getting the Most From This Course.vtt

4.2 KB

4. Installation Getting Started.html

1.2 KB

3. Important note.html

0.6 KB

/02. Statistics and Probability Refresher, and Python Practice/

4. Activity Variation and Standard Deviation.mp4

108.4 MB

9. Activity Advanced Visualization with Seaborn.mp4

100.8 MB

11. Exercise Conditional Probability.mp4

98.5 MB

8. Activity A Crash Course in matplotlib.mp4

93.0 MB

1. Types of Data (Numerical, Categorical, Ordinal).mp4

76.7 MB

10. Activity Covariance and Correlation.mp4

72.9 MB

13. Bayes' Theorem.mp4

58.8 MB

3. Activity Using mean, median, and mode in Python.mp4

46.7 MB

7. Activity Percentiles and Moments.mp4

44.6 MB

6. Common Data Distributions (Normal, Binomial, Poisson, etc).mp4

29.6 MB

2. Mean, Median, Mode.mp4

16.7 MB

12. Exercise Solution Conditional Probability of Purchase by Age.mp4

15.7 MB

5. Probability Density Function Probability Mass Function.mp4

7.3 MB

9. Activity Advanced Visualization with Seaborn.vtt

30.3 KB

11. Exercise Conditional Probability.vtt

28.9 KB

7. Activity Percentiles and Moments.vtt

22.5 KB

10. Activity Covariance and Correlation.vtt

20.1 KB

4. Activity Variation and Standard Deviation.vtt

19.5 KB

8. Activity A Crash Course in matplotlib.vtt

19.3 KB

3. Activity Using mean, median, and mode in Python.vtt

16.1 KB

6. Common Data Distributions (Normal, Binomial, Poisson, etc).vtt

12.3 KB

1. Types of Data (Numerical, Categorical, Ordinal).vtt

12.3 KB

2. Mean, Median, Mode.vtt

9.9 KB

13. Bayes' Theorem.vtt

8.9 KB

5. Probability Density Function Probability Mass Function.vtt

6.1 KB

12. Exercise Solution Conditional Probability of Purchase by Age.vtt

4.1 KB

/03. Predictive Models/

3. Activity Multiple Regression, and Predicting Car Prices.mp4

98.7 MB

1. Activity Linear Regression.mp4

97.5 MB

2. Activity Polynomial Regression.mp4

63.5 MB

4. Multi-Level Models.mp4

28.5 MB

3. Activity Multiple Regression, and Predicting Car Prices.vtt

29.2 KB

1. Activity Linear Regression.vtt

20.0 KB

2. Activity Polynomial Regression.vtt

13.5 KB

4. Multi-Level Models.vtt

8.4 KB

/04. Machine Learning with Python/

11. Decision Trees Concepts.mp4

85.5 MB

4. Activity Implementing a Spam Classifier with Naive Bayes.mp4

85.3 MB

14. Activity XGBoost.mp4

83.1 MB

12. Activity Decision Trees Predicting Hiring Decisions.mp4

60.6 MB

1. Supervised vs. Unsupervised Learning, and TrainTest.mp4

59.4 MB

16. Activity Using SVM to cluster people using scikit-learn.mp4

40.4 MB

13. Ensemble Learning.mp4

38.8 MB

5. K-Means Clustering.mp4

27.3 MB

6. Activity Clustering people based on income and age.mp4

23.1 MB

2. Activity Using TrainTest to Prevent Overfitting a Polynomial Regression.mp4

22.7 MB

15. Support Vector Machines (SVM) Overview.mp4

17.1 MB

7. Measuring Entropy.mp4

12.7 MB

3. Bayesian Methods Concepts.mp4

10.3 MB

9. Activity MAC Installing Graphviz.mp4

9.5 MB

10. Activity LINUX Installing Graphviz.mp4

2.6 MB

8. Activity WINDOWS Installing Graphviz.mp4

972.1 KB

14. Activity XGBoost.vtt

28.7 KB

12. Activity Decision Trees Predicting Hiring Decisions.vtt

17.1 KB

16. Activity Using SVM to cluster people using scikit-learn.vtt

17.1 KB

1. Supervised vs. Unsupervised Learning, and TrainTest.vtt

16.5 KB

11. Decision Trees Concepts.vtt

15.9 KB

4. Activity Implementing a Spam Classifier with Naive Bayes.vtt

14.0 KB

5. K-Means Clustering.vtt

13.3 KB

13. Ensemble Learning.vtt

10.9 KB

2. Activity Using TrainTest to Prevent Overfitting a Polynomial Regression.vtt

10.2 KB

6. Activity Clustering people based on income and age.vtt

9.4 KB

15. Support Vector Machines (SVM) Overview.vtt

8.1 KB

3. Bayesian Methods Concepts.vtt

7.0 KB

7. Measuring Entropy.vtt

5.5 KB

9. Activity MAC Installing Graphviz.vtt

1.5 KB

10. Activity LINUX Installing Graphviz.vtt

1.2 KB

8. Activity WINDOWS Installing Graphviz.vtt

0.7 KB

/05. Recommender Systems/

5. Activity Making Movie Recommendations with Item-Based Collaborative Filtering.mp4

130.1 MB

3. Activity Finding Movie Similarities using Cosine Similarity.mp4

86.7 MB

1. User-Based Collaborative Filtering.mp4

85.7 MB

4. Activity Improving the Results of Movie Similarities.mp4

58.8 MB

6. Exercise Improve the recommender's results.mp4

29.4 MB

2. Item-Based Collaborative Filtering.mp4

24.3 MB

5. Activity Making Movie Recommendations with Item-Based Collaborative Filtering.vtt

17.3 KB

3. Activity Finding Movie Similarities using Cosine Similarity.vtt

15.3 KB

2. Item-Based Collaborative Filtering.vtt

15.2 KB

1. User-Based Collaborative Filtering.vtt

14.8 KB

4. Activity Improving the Results of Movie Similarities.vtt

13.7 KB

6. Exercise Improve the recommender's results.vtt

10.4 KB

/06. More Data Mining and Machine Learning Techniques/

6. Reinforcement Learning.mp4

131.3 MB

2. Activity Using KNN to predict a rating for a movie.mp4

89.7 MB

4. Activity PCA Example with the Iris data set.mp4

69.0 MB

7. Activity Reinforcement Learning & Q-Learning with Gym.mp4

65.8 MB

5. Data Warehousing Overview ETL and ELT.mp4

61.6 MB

3. Dimensionality Reduction Principal Component Analysis (PCA).mp4

40.0 MB

1. K-Nearest-Neighbors Concepts.mp4

14.7 MB

9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).mp4

12.2 MB

8. Understanding a Confusion Matrix.mp4

7.7 MB

7. Activity Reinforcement Learning & Q-Learning with Gym.vtt

22.5 KB

6. Reinforcement Learning.vtt

21.5 KB

2. Activity Using KNN to predict a rating for a movie.vtt

20.5 KB

5. Data Warehousing Overview ETL and ELT.vtt

15.3 KB

4. Activity PCA Example with the Iris data set.vtt

15.3 KB

9. Measuring Classifiers (Precision, Recall, F1, ROC, AUC).vtt

10.9 KB

8. Understanding a Confusion Matrix.vtt

9.9 KB

3. Dimensionality Reduction Principal Component Analysis (PCA).vtt

9.9 KB

1. K-Nearest-Neighbors Concepts.vtt

6.7 KB

/07. Dealing with Real-World Data/

3. Data Cleaning and Normalization.mp4

76.6 MB

2. Activity K-Fold Cross-Validation to avoid overfitting.mp4

59.7 MB

10. Binning, Transforming, Encoding, Scaling, and Shuffling.mp4

44.8 MB

4. Activity Cleaning web log data.mp4

32.5 MB

6. Activity Detecting outliers.mp4

28.5 MB

1. BiasVariance Tradeoff.mp4

24.8 MB

8. Imputation Techniques for Missing Data.mp4

19.1 MB

9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.mp4

18.3 MB

7. Feature Engineering and the Curse of Dimensionality.mp4

15.3 MB

5. Normalizing numerical data.mp4

10.8 MB

4. Activity Cleaning web log data.vtt

18.5 KB

2. Activity K-Fold Cross-Validation to avoid overfitting.vtt

17.6 KB

8. Imputation Techniques for Missing Data.vtt

14.7 KB

10. Binning, Transforming, Encoding, Scaling, and Shuffling.vtt

14.4 KB

3. Data Cleaning and Normalization.vtt

13.7 KB

7. Feature Engineering and the Curse of Dimensionality.vtt

11.9 KB

6. Activity Detecting outliers.vtt

11.4 KB

1. BiasVariance Tradeoff.vtt

10.9 KB

9. Handling Unbalanced Data Oversampling, Undersampling, and SMOTE.vtt

10.1 KB

5. Normalizing numerical data.vtt

6.2 KB

/08. Apache Spark Machine Learning on Big Data/

3. Activity Installing Spark.mp4

148.2 MB

7. Introduction to Decision Trees in Spark.mp4

140.5 MB

8. Activity K-Means Clustering in Spark.mp4

121.8 MB

10. Activity Searching Wikipedia with Spark.mp4

88.1 MB

9. TF IDF.mp4

68.9 MB

11. Activity Using the Spark DataFrame API for MLLib.mp4

68.3 MB

4. Spark Introduction.mp4

26.2 MB

5. Spark and the Resilient Distributed Dataset (RDD).mp4

23.4 MB

6. Introducing MLLib.mp4

15.4 MB

7. Introduction to Decision Trees in Spark.vtt

28.2 KB

5. Spark and the Resilient Distributed Dataset (RDD).vtt

20.5 KB

3. Activity Installing Spark.vtt

18.0 KB

8. Activity K-Means Clustering in Spark.vtt

18.0 KB

4. Spark Introduction.vtt

16.3 KB

10. Activity Searching Wikipedia with Spark.vtt

13.2 KB

11. Activity Using the Spark DataFrame API for MLLib.vtt

13.2 KB

9. TF IDF.vtt

11.3 KB

6. Introducing MLLib.vtt

8.9 KB

2. Spark installation notes for MacOS and Linux users.html

3.2 KB

1. Warning about Java 21+ and Spark 3!.html

1.1 KB

/09. Experimental Design ML in the Real World/

6. AB Test Gotchas.mp4

96.2 MB

4. Activity Hands-on With T-Tests.mp4

50.1 MB

2. AB Testing Concepts.mp4

33.6 MB

1. Deploying Models to Real-Time Systems.mp4

18.1 MB

3. T-Tests and P-Values.mp4

14.8 MB

5. Determining How Long to Run an Experiment.mp4

10.2 MB

6. AB Test Gotchas.vtt

17.7 KB

1. Deploying Models to Real-Time Systems.vtt

16.1 KB

2. AB Testing Concepts.vtt

15.9 KB

4. Activity Hands-on With T-Tests.vtt

10.6 KB

3. T-Tests and P-Values.vtt

10.5 KB

5. Determining How Long to Run an Experiment.vtt

6.6 KB

/10. Deep Learning and Neural Networks/

17. The Ethics of Deep Learning.mp4

126.4 MB

14. Activity Transfer Learning.mp4

116.4 MB

6. Activity Using Tensorflow, Part 1.mp4

112.9 MB

7. Activity Using Tensorflow, Part 2.mp4

99.7 MB

13. Activity Using a RNN for sentiment analysis.mp4

77.1 MB

8. Activity Introducing Keras.mp4

75.5 MB

1. Deep Learning Pre-Requisites.mp4

73.8 MB

2. The History of Artificial Neural Networks.mp4

72.2 MB

9. Activity Using Keras to Predict Political Affiliations.mp4

70.1 MB

10. Convolutional Neural Networks (CNN's).mp4

61.6 MB

3. Activity Deep Learning in the Tensorflow Playground.mp4

58.4 MB

11. Activity Using CNN's for handwriting recognition.mp4

55.4 MB

5. Introducing Tensorflow.mp4

48.9 MB

12. Recurrent Neural Networks (RNN's).mp4

34.4 MB

4. Deep Learning Details.mp4

32.4 MB

16. Deep Learning Regularization with Dropout and Early Stopping.mp4

20.8 MB

15. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.mp4

8.9 MB

8. Activity Introducing Keras.vtt

24.3 KB

6. Activity Using Tensorflow, Part 1.vtt

23.5 KB

1. Deep Learning Pre-Requisites.vtt

22.2 KB

5. Introducing Tensorflow.vtt

22.2 KB

9. Activity Using Keras to Predict Political Affiliations.vtt

21.5 KB

14. Activity Transfer Learning.vtt

21.4 KB

10. Convolutional Neural Networks (CNN's).vtt

21.3 KB

7. Activity Using Tensorflow, Part 2.vtt

21.1 KB

17. The Ethics of Deep Learning.vtt

21.1 KB

2. The History of Artificial Neural Networks.vtt

20.5 KB

3. Activity Deep Learning in the Tensorflow Playground.vtt

20.3 KB

12. Recurrent Neural Networks (RNN's).vtt

19.6 KB

4. Deep Learning Details.vtt

17.9 KB

13. Activity Using a RNN for sentiment analysis.vtt

17.5 KB

11. Activity Using CNN's for handwriting recognition.vtt

14.3 KB

16. Deep Learning Regularization with Dropout and Early Stopping.vtt

11.9 KB

15. Tuning Neural Networks Learning Rate and Batch Size Hyperparameters.vtt

8.8 KB

/11. Generative Models/

2. Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST.mp4

156.1 MB

5. Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST.mp4

132.2 MB

4. Generative Adversarial Networks (GAN's) - Playing with some demos.mp4

92.9 MB

1. Variational Auto-Encoders (VAE's) - how they work.mp4

45.0 MB

6. Learning More about Deep Learning.mp4

21.2 MB

3. Generative Adversarial Networks (GAN's) - How they work.mp4

16.0 MB

5. GAN_on_Fashion_MNIST.ipynb

3.9 MB

2. VariationalAutoEncoders.ipynb

1.4 MB

2. Variational Auto-Encoders (VAE) - Hands-on with Fashion MNIST.vtt

46.4 KB

5. Generative Adversarial Networks (GAN's) - Hands-on with Fashion MNIST.vtt

27.5 KB

4. Generative Adversarial Networks (GAN's) - Playing with some demos.vtt

18.5 KB

1. Variational Auto-Encoders (VAE's) - how they work.vtt

18.5 KB

3. Generative Adversarial Networks (GAN's) - How they work.vtt

13.6 KB

6. Learning More about Deep Learning.vtt

3.3 KB

/12. Generative AI GPT, ChatGPT, Transformers, Self Attention Based Neural Networks/

11. Activity Fine Tuning GPT with the IMDb dataset.mp4

89.3 MB

10. Activity Using small and large GPT models within Google CoLab and HuggingFace.mp4

72.4 MB

7. Activity Tokenization with Google CoLab and HuggingFace.mp4

71.0 MB

12. From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients.mp4

53.6 MB

2. Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth.mp4

43.5 MB

9. Activity Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT.mp4

31.9 MB

4. How GPT Works, Part 1 The GPT Transformer Architecture.mp4

31.7 MB

13. From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation.mp4

29.9 MB

1. The Transformer Architecture (encoders, decoders, and self-attention.).mp4

20.7 MB

5. How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding.mp4

15.5 MB

3. Applications of Transformers (GPT).mp4

10.0 MB

7. Transformers_MLCourse.ipynb

7.0 MB

8. Activity Positional Encoding.mp4

6.8 MB

6. Fine Tuning Transfer Learning with Transformers.mp4

5.3 MB

1. The Transformer Architecture (encoders, decoders, and self-attention.).vtt

19.0 KB

2. Self-Attention, Masked Self-Attention, and Multi-Headed Self Attention in depth.vtt

18.4 KB

7. Activity Tokenization with Google CoLab and HuggingFace.vtt

15.8 KB

4. How GPT Works, Part 1 The GPT Transformer Architecture.vtt

13.6 KB

12. From GPT to ChatGPT Deep Reinforcement Learning, Proximal Policy Gradients.vtt

13.6 KB

11. Activity Fine Tuning GPT with the IMDb dataset.vtt

11.4 KB

13. From GPT to ChatGPT Reinforcement Learning from Human Feedback and Moderation.vtt

10.9 KB

9. Activity Masked, Multi-Headed Self Attention with BERT, BERTViz, and exBERT.vtt

10.8 KB

10. Activity Using small and large GPT models within Google CoLab and HuggingFace.vtt

9.2 KB

5. How GPT Works, Part 2 Tokenization, Positional Encoding, Embedding.vtt

9.2 KB

3. Applications of Transformers (GPT).vtt

8.7 KB

6. Fine Tuning Transfer Learning with Transformers.vtt

4.7 KB

8. Activity Positional Encoding.vtt

3.7 KB

/13. The OpenAI API (Developing with GPT and ChatGPT)/

7. The New OpenAI Fine-Tuning API Fine-Tuning GPT-3.5 to simulate Commander Data!.mp4

334.5 MB

6. Demo Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek.mp4

174.6 MB

2. Activity Using Tools and Functions in the OpenAI Chat Completion API.mp4

85.1 MB

1. Activity The OpenAI Chat Completions API.mp4

68.6 MB

4. Activity The Embeddings API in OpenAI Finding similarities between words.mp4

30.4 MB

3. Activity The Images (DALL-E) API in OpenAI.mp4

27.0 MB

8. Activity The OpenAI Moderation API.mp4

17.0 MB

9. Activity The OpenAI Audio API (speech to text).mp4

13.6 MB

5. The Legacy Fine-Tuning API for GPT Models in OpenAI.mp4

12.2 MB

7. The New OpenAI Fine-Tuning API Fine-Tuning GPT-3.5 to simulate Commander Data!.vtt

38.8 KB

6. Demo Fine-Tuning OpenAI's Davinci Model to simulate Data from Star Trek.vtt

30.1 KB

1. Activity The OpenAI Chat Completions API.vtt

21.1 KB

2. Activity Using Tools and Functions in the OpenAI Chat Completion API.vtt

18.3 KB

7. MakingData.ipynb

13.9 KB

4. Activity The Embeddings API in OpenAI Finding similarities between words.vtt

11.4 KB

5. The Legacy Fine-Tuning API for GPT Models in OpenAI.vtt

9.8 KB

3. Activity The Images (DALL-E) API in OpenAI.vtt

7.5 KB

9. Activity The OpenAI Audio API (speech to text).vtt

7.0 KB

8. Activity The OpenAI Moderation API.vtt

5.2 KB

2. Functions.py

3.5 KB

6. extract-script.py

1.9 KB

1. Chat-Completions.py

1.2 KB

4. Embedding.py

1.0 KB

3. Image.py

0.7 KB

9. Audio.py

0.4 KB

8. Moderation.py

0.2 KB

/14. Retrieval Augmented Generation (RAG,) Advanced RAG, and LLM Agents/

4. Activity Evaluating our RAG-based Cdr. Data using RAGAS and langchain.mp4

283.9 MB

8. Activity Simulating Cdr. Data with Advanced RAG and langchain.mp4

277.3 MB

10. Activity Building a Cdr. Data chatbot with LLM Agents, web search & math tools.mp4

276.6 MB

1. Retrieval Augmented Generation (RAG) How it works, with some examples.mp4

97.4 MB

2. Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek.mp4

76.0 MB

5. Advanced RAG Pre-Retrieval chunking semantic chunking data extraction.mp4

30.9 MB

3. RAG Metrics The RAG Triad, relevancy, recall, precision, accuracy, and more.mp4

26.3 MB

9. LLM Agents and Swarms of Agents.mp4

25.9 MB

7. Advanced RAG Prompt Compression, and More Tuning Opportunities.mp4

22.5 MB

6. Advanced RAG Query Rewriting.mp4

8.5 MB

8. Data_Advanced_RAG.ipynb

781.9 KB

2. Data_RAG.ipynb

102.8 KB

10. Data_Agent.ipynb

85.3 KB

4. Data_RAG_Metrics.ipynb

73.7 KB

2. Demo Using Retrieval Augmented Generation (RAG) to simulate Data from Star Trek.vtt

34.3 KB

4. Activity Evaluating our RAG-based Cdr. Data using RAGAS and langchain.vtt

32.1 KB

1. Retrieval Augmented Generation (RAG) How it works, with some examples.vtt

31.6 KB

10. Activity Building a Cdr. Data chatbot with LLM Agents, web search & math tools.vtt

29.0 KB

8. Activity Simulating Cdr. Data with Advanced RAG and langchain.vtt

28.3 KB

3. RAG Metrics The RAG Triad, relevancy, recall, precision, accuracy, and more.vtt

20.1 KB

5. Advanced RAG Pre-Retrieval chunking semantic chunking data extraction.vtt

14.8 KB

7. Advanced RAG Prompt Compression, and More Tuning Opportunities.vtt

10.8 KB

9. LLM Agents and Swarms of Agents.vtt

10.0 KB

6. Advanced RAG Query Rewriting.vtt

7.3 KB

/15. Final Project/

2. Final project review.mp4

67.6 MB

1. Your final project assignment Mammogram Classification.mp4

54.1 MB

2. Final project review.vtt

18.9 KB

1. Your final project assignment Mammogram Classification.vtt

12.3 KB

/16. You made it!/

1. More to Explore.mp4

35.6 MB

3. 2019-04-08_18-15-28-b861b8ffb2406e3f70aad5871e4e91ff.png

135.8 KB

3. 2019-04-08_17-55-57-bcf2d7bf9cef514f135511b184f77e48.png

135.6 KB

3. 2019-04-08_18-17-01-1a5b2a5d579cfb42118eaf525e7a7b83.png

130.7 KB

3. 2019-04-08_18-17-59-492c9dc76de5ed12f532ead3e609f148.png

129.8 KB

3. 2019-04-08_18-01-48-cf6d9b7536a1e4a75438299681428036.png

124.7 KB

3. 2019-04-08_18-03-42-4930e7b3a27d368a568d97fd8c959359.png

124.3 KB

3. 2019-04-08_18-19-48-5bc03a831100a771082c4245e271a4b0.png

117.4 KB

3. 2019-04-08_18-04-33-85f2594b9a584964a59514617b27f95b.png

114.3 KB

3. 2019-05-14_17-14-40-e1d4913408ac3d0f1eaad1a80705cf5b.png

104.7 KB

3. 2019-04-08_18-20-39-de5ee610f1e6e8e483229fd1c9d7e998.png

95.1 KB

3. 2024-07-26_12-45-38-32f4df5ac9105153f0fd5c7fdab93d89.png

94.6 KB

3. 2022-07-23_11-27-36-c40b770315b5187e58bca3c2542ee3b4.png

85.5 KB

3. 2024-08-19_12-50-25-5160f601d41d2a72d06a9c0d700cad51.png

85.1 KB

3. 2021-10-16_12-16-09-e3dd0e05ba917baf745a42fc35a0cbb2.jpg

72.3 KB

3. 2022-04-18_13-12-40-afb201ce74196d83694608d7fc39a43e.png

61.5 KB

3. 2019-04-08_18-21-33-2ee7f2d5dff7cccfd9f4103899aa6cc0.png

61.0 KB

3. 2019-04-08_19-24-33-63d41c7c27f7ed6e9ca0e1072e6c2751.jpg

46.6 KB

3. 2024-08-06_13-32-36-7f6c6c13c6b331d2282e71ed3e362b48.jpg

32.6 KB

3. 2019-10-23_18-48-57-9fb797c585d7195417eca364a27b07c9.jpg

24.3 KB

3. Bonus Lecture.html

11.3 KB

1. More to Explore.vtt

5.8 KB

2. Don't Forget to Leave a Rating!.html

0.6 KB

 

Total files 322


Copyright © 2025 FileMood.com