FileMood

Download [Udemy] Natural Language Processing With Transformers in Python (06.2021)

Udemy Natural Language Processing With Transformers in Python 06 2021

Name

[Udemy] Natural Language Processing With Transformers in Python (06.2021)

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

3.5 GB

Total Files

288

Hash

15A0A25219359A8870CB3F3844C0E975A3826772

/1. Introduction/

1. Introduction.mp4

9.6 MB

1. Introduction.srt

3.2 KB

2. Course Overview.mp4

36.0 MB

2. Course Overview.srt

8.3 KB

2.1 GitHub Repo.html

0.1 KB

3. Environment Setup.mp4

39.1 MB

3. Environment Setup.srt

7.5 KB

3.1 Installation Instructions.html

0.1 KB

4. CUDA Setup.mp4

24.9 MB

4. CUDA Setup.srt

3.6 KB

4.1 Installation Instructions.html

0.1 KB

/10. Metrics For Language/

1. Q&A Performance With Exact Match (EM).mp4

19.0 MB

1. Q&A Performance With Exact Match (EM).srt

5.7 KB

1.1 Notebook.html

0.2 KB

2. ROUGE in Python.mp4

22.7 MB

2. ROUGE in Python.srt

4.6 KB

2.1 Notebook.html

0.2 KB

3. Applying ROUGE to Q&A.mp4

35.6 MB

3. Applying ROUGE to Q&A.srt

8.8 KB

3.1 Notebook.html

0.2 KB

4. Recall, Precision and F1.mp4

22.0 MB

4. Recall, Precision and F1.srt

5.6 KB

4.1 Notebook.html

0.2 KB

5. Longest Common Subsequence (LCS).mp4

15.7 MB

5. Longest Common Subsequence (LCS).srt

3.1 KB

5.1 Notebook.html

0.2 KB

6. Q&A Performance With ROUGE.mp4

19.7 MB

6. Q&A Performance With ROUGE.srt

4.2 KB

6.1 Notebook.html

0.2 KB

/11. Reader-Retriever QA With Haystack/

1. Intro to Retriever-Reader and Haystack.mp4

14.6 MB

1. Intro to Retriever-Reader and Haystack.srt

3.9 KB

1.1 Notebook.html

0.2 KB

10. FAISS in Haystack.mp4

71.4 MB

10. FAISS in Haystack.srt

13.7 KB

10.1 Notebook.html

0.2 KB

11. What is DPR.mp4

31.1 MB

11. What is DPR.srt

8.7 KB

11.1 Article.html

0.2 KB

11.2 Notebook.html

0.2 KB

12. The DPR Architecture.mp4

15.0 MB

12. The DPR Architecture.srt

2.3 KB

12.1 Article.html

0.2 KB

12.2 Notebook.html

0.2 KB

13. Retriever-Reader Stack.mp4

78.9 MB

13. Retriever-Reader Stack.srt

11.4 KB

13.1 Notebook.html

0.2 KB

2. What is Elasticsearch.mp4

24.7 MB

2. What is Elasticsearch.srt

7.4 KB

2.1 Elasticsearch (Cloud) Introduction Article.html

0.2 KB

3. Elasticsearch Setup (Windows).mp4

21.9 MB

3. Elasticsearch Setup (Windows).srt

2.1 KB

4. Elasticsearch Setup (Linux).mp4

21.2 MB

4. Elasticsearch Setup (Linux).srt

2.1 KB

5. Elasticsearch in Haystack.mp4

40.9 MB

5. Elasticsearch in Haystack.srt

8.9 KB

5.1 Notebook.html

0.2 KB

6. Sparse Retrievers.mp4

21.4 MB

6. Sparse Retrievers.srt

4.3 KB

6.1 Notebook.html

0.2 KB

7. Cleaning the Index.mp4

27.7 MB

7. Cleaning the Index.srt

5.4 KB

7.1 Notebook.html

0.2 KB

8. Implementing a BM25 Retriever.mp4

13.2 MB

8. Implementing a BM25 Retriever.srt

2.6 KB

8.1 Notebook.html

0.2 KB

9. What is FAISS.mp4

45.0 MB

9. What is FAISS.srt

10.1 KB

9.1 Article.html

0.2 KB

9.2 Notebook.html

0.2 KB

/12. [Project] Open-Domain QA/

1. ODQA Stack Structure.mp4

6.5 MB

1. ODQA Stack Structure.srt

2.0 KB

2. Creating the Database.mp4

44.5 MB

2. Creating the Database.srt

7.9 KB

2.1 Data.html

0.1 KB

2.2 Notebook.html

0.2 KB

3. Building the Haystack Pipeline.mp4

58.5 MB

3. Building the Haystack Pipeline.srt

9.2 KB

3.1 Notebook.html

0.2 KB

/13. Similarity/

1. Introduction to Similarity.mp4

29.6 MB

1. Introduction to Similarity.srt

8.0 KB

2. Extracting The Last Hidden State Tensor.mp4

31.2 MB

2. Extracting The Last Hidden State Tensor.srt

5.8 KB

3. Sentence Vectors With Mean Pooling.mp4

33.6 MB

3. Sentence Vectors With Mean Pooling.srt

8.2 KB

4. Using Cosine Similarity.mp4

35.5 MB

4. Using Cosine Similarity.srt

6.0 KB

5. Similarity With Sentence-Transformers.mp4

24.1 MB

5. Similarity With Sentence-Transformers.srt

4.2 KB

/14. Fine-Tuning Transformer Models/

1. Visual Guide to BERT Pretraining.mp4

30.0 MB

1. Visual Guide to BERT Pretraining.srt

9.9 KB

10. Fine-tuning with NSP - Data Preparation.mp4

81.8 MB

10. Fine-tuning with NSP - Data Preparation.srt

15.0 KB

10.1 Notebook.html

0.2 KB

11. Fine-tuning with NSP - DataLoader.mp4

15.0 MB

11. Fine-tuning with NSP - DataLoader.srt

3.4 KB

11.1 Notebook.html

0.2 KB

12. Setup the NSP Fine-tuning Training Loop.html

0.1 KB

13. The Logic of MLM and NSP.mp4

27.5 MB

13. The Logic of MLM and NSP.srt

5.6 KB

13.1 Notebook.html

0.2 KB

14. Fine-tuning with MLM and NSP - Data Preparation.mp4

45.7 MB

14. Fine-tuning with MLM and NSP - Data Preparation.srt

9.2 KB

14.1 Notebook.html

0.2 KB

15. Setup DataLoader and Model Fine-tuning For MLM and NSP.html

0.1 KB

2. Introduction to BERT For Pretraining Code.mp4

30.7 MB

2. Introduction to BERT For Pretraining Code.srt

5.3 KB

2.1 Notebook.html

0.1 KB

3. BERT Pretraining - Masked-Language Modeling (MLM).mp4

49.0 MB

3. BERT Pretraining - Masked-Language Modeling (MLM).srt

9.6 KB

3.1 Notebook.html

0.1 KB

4. BERT Pretraining - Next Sentence Prediction (NSP).mp4

44.1 MB

4. BERT Pretraining - Next Sentence Prediction (NSP).srt

7.1 KB

4.1 Notebook.html

0.1 KB

5. The Logic of MLM.mp4

83.3 MB

5. The Logic of MLM.srt

13.6 KB

5.1 Notebook.html

0.2 KB

6. Fine-tuning with MLM - Data Preparation.mp4

80.4 MB

6. Fine-tuning with MLM - Data Preparation.srt

13.8 KB

6.1 Notebook.html

0.2 KB

7. Fine-tuning with MLM - Training.mp4

73.1 MB

7. Fine-tuning with MLM - Training.srt

14.0 KB

7.1 Notebook.html

0.2 KB

8. Fine-tuning with MLM - Training with Trainer.mp4

20.8 MB

8. Fine-tuning with MLM - Training with Trainer.srt

3.4 KB

8.1 Notebook.html

0.2 KB

9. The Logic of NSP.mp4

21.9 MB

9. The Logic of NSP.srt

4.7 KB

9.1 Notebook.html

0.2 KB

/2. NLP and Transformers/

1. The Three Eras of AI.mp4

23.3 MB

1. The Three Eras of AI.srt

7.9 KB

10. Transformer Heads.mp4

41.8 MB

10. Transformer Heads.srt

10.9 KB

2. Pros and Cons of Neural AI.mp4

34.4 MB

2. Pros and Cons of Neural AI.srt

5.6 KB

2.1 2010 Flash Crash.html

0.2 KB

2.2 Amazon AI Recruitment Bias.html

0.1 KB

2.3 Self-Driving Limitations.html

0.2 KB

3. Word Vectors.mp4

22.8 MB

3. Word Vectors.srt

5.2 KB

4. Recurrent Neural Networks.mp4

17.9 MB

4. Recurrent Neural Networks.srt

4.6 KB

5. Long Short-Term Memory.mp4

6.7 MB

5. Long Short-Term Memory.srt

2.2 KB

6. Encoder-Decoder Attention.mp4

26.4 MB

6. Encoder-Decoder Attention.srt

6.2 KB

7. Self-Attention.mp4

21.8 MB

7. Self-Attention.srt

4.7 KB

8. Multi-head Attention.mp4

14.0 MB

8. Multi-head Attention.srt

3.3 KB

9. Positional Encoding.mp4

58.2 MB

9. Positional Encoding.srt

9.9 KB

/3. Preprocessing for NLP/

1. Stopwords.mp4

24.2 MB

1. Stopwords.srt

6.4 KB

1.1 Notebook.html

0.2 KB

2. Tokens Introduction.mp4

25.2 MB

2. Tokens Introduction.srt

8.6 KB

2.1 Notebook.html

0.2 KB

3. Model-Specific Special Tokens.mp4

19.8 MB

3. Model-Specific Special Tokens.srt

7.3 KB

3.1 Notebook.html

0.2 KB

4. Stemming.mp4

18.1 MB

4. Stemming.srt

6.6 KB

4.1 Notebook.html

0.2 KB

5. Lemmatization.mp4

11.1 MB

5. Lemmatization.srt

4.3 KB

5.1 Notebook.html

0.2 KB

6. Unicode Normalization - Canonical and Compatibility Equivalence.mp4

17.8 MB

6. Unicode Normalization - Canonical and Compatibility Equivalence.srt

6.7 KB

6.1 Notebook.html

0.2 KB

7. Unicode Normalization - Composition and Decomposition.mp4

21.2 MB

7. Unicode Normalization - Composition and Decomposition.srt

5.8 KB

7.1 Notebook.html

0.2 KB

8. Unicode Normalization - NFD and NFC.mp4

21.0 MB

8. Unicode Normalization - NFD and NFC.srt

6.4 KB

8.1 Notebook.html

0.2 KB

9. Unicode Normalization - NFKD and NFKC.mp4

31.9 MB

9. Unicode Normalization - NFKD and NFKC.srt

8.9 KB

9.1 Notebook.html

0.2 KB

/4. Attention/

1. Attention Introduction.mp4

16.6 MB

1. Attention Introduction.srt

2.8 KB

1.1 Notebook.html

0.1 KB

2. Alignment With Dot-Product.mp4

51.5 MB

2. Alignment With Dot-Product.srt

14.1 KB

2.1 Notebook.html

0.2 KB

3. Dot-Product Attention.mp4

30.4 MB

3. Dot-Product Attention.srt

5.6 KB

3.1 Notebook.html

0.2 KB

4. Self Attention.mp4

29.8 MB

4. Self Attention.srt

6.4 KB

4.1 Notebook.html

0.2 KB

5. Bidirectional Attention.mp4

11.3 MB

5. Bidirectional Attention.srt

3.0 KB

5.1 Notebook.html

0.2 KB

6. Multi-head and Scaled Dot-Product Attention.mp4

35.5 MB

6. Multi-head and Scaled Dot-Product Attention.srt

7.3 KB

6.1 Notebook.html

0.2 KB

/5. Language Classification/

1. Introduction to Sentiment Analysis.mp4

39.3 MB

1. Introduction to Sentiment Analysis.srt

10.3 KB

1.1 Notebook.html

0.2 KB

2. Prebuilt Flair Models.mp4

32.2 MB

2. Prebuilt Flair Models.srt

9.6 KB

2.1 Notebook.html

0.2 KB

3. Introduction to Sentiment Models With Transformers.mp4

28.2 MB

3. Introduction to Sentiment Models With Transformers.srt

7.3 KB

3.1 Notebook.html

0.2 KB

4. Tokenization And Special Tokens For BERT.mp4

58.1 MB

4. Tokenization And Special Tokens For BERT.srt

8.6 KB

4.1 Notebook.html

0.2 KB

5. Making Predictions.mp4

27.2 MB

5. Making Predictions.srt

7.0 KB

5.1 Notebook.html

0.2 KB

/6. [Project] Sentiment Model With TensorFlow and Transformers/

1. Project Overview.mp4

13.1 MB

1. Project Overview.srt

3.5 KB

2. Getting the Data (Kaggle API).mp4

36.7 MB

2. Getting the Data (Kaggle API).srt

8.6 KB

2.1 Notebook.html

0.2 KB

3. Preprocessing.mp4

65.5 MB

3. Preprocessing.srt

15.5 KB

3.1 Notebook.html

0.2 KB

4. Building a Dataset.mp4

23.7 MB

4. Building a Dataset.srt

6.2 KB

4.1 Notebook.html

0.2 KB

5. Dataset Shuffle, Batch, Split, and Save.mp4

31.6 MB

5. Dataset Shuffle, Batch, Split, and Save.srt

7.8 KB

5.1 Notebook.html

0.2 KB

6. Build and Save.mp4

80.8 MB

6. Build and Save.srt

14.4 KB

6.1 Notebook.html

0.2 KB

7. Loading and Prediction.mp4

59.5 MB

7. Loading and Prediction.srt

12.0 KB

7.1 Notebook.html

0.2 KB

/7. Long Text Classification With BERT/

1. Classification of Long Text Using Windows.mp4

121.8 MB

1. Classification of Long Text Using Windows.srt

24.8 KB

1.1 Article.html

0.2 KB

1.2 Notebook.html

0.2 KB

2. Window Method in PyTorch.mp4

89.1 MB

2. Window Method in PyTorch.srt

16.7 KB

2.1 Notebook.html

0.2 KB

/8. Named Entity Recognition (NER)/

1. Introduction to spaCy.mp4

54.2 MB

1. Introduction to spaCy.srt

9.6 KB

1.1 Notebook.html

0.2 KB

1.2 spaCy Model Docs.html

0.1 KB

10. NER With roBERTa.mp4

61.9 MB

10. NER With roBERTa.srt

10.6 KB

10.1 Notebook.html

0.2 KB

2. Extracting Entities.mp4

35.2 MB

2. Extracting Entities.srt

6.9 KB

2.1 Notebook.html

0.2 KB

3. NER Walkthrough.html

0.1 KB

4. Authenticating With The Reddit API.mp4

37.4 MB

4. Authenticating With The Reddit API.srt

8.0 KB

4.1 Notebook.html

0.2 KB

5. Pulling Data With The Reddit API.mp4

93.3 MB

5. Pulling Data With The Reddit API.srt

13.2 KB

5.1 Notebook.html

0.2 KB

6. Extracting ORGs From Reddit Data.mp4

29.5 MB

6. Extracting ORGs From Reddit Data.srt

6.9 KB

6.1 Data.html

0.2 KB

6.2 Notebook.html

0.2 KB

7. Getting Entity Frequency.mp4

19.3 MB

7. Getting Entity Frequency.srt

4.0 KB

7.1 Notebook.html

0.2 KB

8. Entity Blacklist.mp4

21.1 MB

8. Entity Blacklist.srt

4.1 KB

8.1 Notebook.html

0.2 KB

9. NER With Sentiment.mp4

104.7 MB

9. NER With Sentiment.srt

20.1 KB

9.1 Notebook.html

0.2 KB

/9. Question and Answering/

1. Open Domain and Reading Comprehension.mp4

16.9 MB

1. Open Domain and Reading Comprehension.srt

3.6 KB

1.1 Notebook.html

0.2 KB

2. Retrievers, Readers, and Generators.mp4

30.1 MB

2. Retrievers, Readers, and Generators.srt

7.3 KB

2.1 Notebook.html

0.2 KB

3. Intro to SQuAD 2.0.mp4

26.6 MB

3. Intro to SQuAD 2.0.srt

6.8 KB

3.1 Notebook.html

0.2 KB

4. Processing SQuAD Training Data.mp4

40.3 MB

4. Processing SQuAD Training Data.srt

7.2 KB

4.1 Notebook.html

0.2 KB

5. (Optional) Processing SQuAD Training Data with Match-Case.mp4

31.6 MB

5. (Optional) Processing SQuAD Training Data with Match-Case.srt

5.2 KB

5.1 Notebook.html

0.2 KB

5.2 Pattern Matching Article.html

0.2 KB

6. Processing SQuAD Dev Data.html

0.1 KB

7. Our First Q&A Model.mp4

47.9 MB

7. Our First Q&A Model.srt

9.2 KB

7.1 Notebook.html

0.2 KB

 

Total files 288


Copyright © 2025 FileMood.com