FileMood

Download Udemy - PyTorch Deep Learning and Artificial Intelligence (12.2024)

Udemy PyTorch Deep Learning and Artificial Intelligence 12 2024

Name

Udemy - PyTorch Deep Learning and Artificial Intelligence (12.2024)

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

8.4 GB

Total Files

306

Last Seen

2025-08-23 00:24

Hash

714E6D8708DA74301C32AB737A5C05F01E77246B

/1 - Introduction/

1 -Welcome.mp4

37.4 MB

1 -Welcome.vtt

5.2 KB

2 -Overview and Outline.mp4

83.5 MB

2 -Overview and Outline.vtt

16.1 KB

/10 - Transfer Learning for Computer Vision/

1 -Transfer Learning Theory.mp4

60.9 MB

1 -Transfer Learning Theory.vtt

9.7 KB

2 -Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp4

22.7 MB

2 -Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).vtt

4.7 KB

3 -Large Datasets.mp4

43.2 MB

3 -Large Datasets.vtt

8.2 KB

4 -2 Approaches to Transfer Learning.mp4

22.8 MB

4 -2 Approaches to Transfer Learning.vtt

5.4 KB

5 -Transfer Learning Code (pt 1).mp4

81.6 MB

5 -Transfer Learning Code (pt 1).vtt

10.4 KB

6 -Transfer Learning Code (pt 2).mp4

59.0 MB

6 -Transfer Learning Code (pt 2).vtt

7.9 KB

/11 - GANs (Generative Adversarial Networks)/

1 -GAN Theory.mp4

96.5 MB

1 -GAN Theory.vtt

18.9 KB

2 -GAN Code Preparation.mp4

29.5 MB

2 -GAN Code Preparation.vtt

7.6 KB

3 -GAN Code.mp4

64.5 MB

3 -GAN Code.vtt

9.6 KB

/12 - Deep Reinforcement Learning (Theory)/

1 -Deep Reinforcement Learning Section Introduction.mp4

42.7 MB

1 -Deep Reinforcement Learning Section Introduction.vtt

7.7 KB

10 -Epsilon-Greedy.mp4

43.5 MB

10 -Epsilon-Greedy.vtt

6.7 KB

11 -Q-Learning.mp4

70.0 MB

11 -Q-Learning.vtt

16.0 KB

12 -Deep Q-Learning DQN (pt 1).mp4

63.0 MB

12 -Deep Q-Learning DQN (pt 1).vtt

14.7 KB

13 -Deep Q-Learning DQN (pt 2).mp4

54.6 MB

13 -Deep Q-Learning DQN (pt 2).vtt

11.9 KB

14 -How to Learn Reinforcement Learning.mp4

42.2 MB

14 -How to Learn Reinforcement Learning.vtt

6.9 KB

2 -Elements of a Reinforcement Learning Problem.mp4

110.1 MB

2 -Elements of a Reinforcement Learning Problem.vtt

23.4 KB

3 -States, Actions, Rewards, Policies.mp4

46.2 MB

3 -States, Actions, Rewards, Policies.vtt

10.2 KB

4 -Markov Decision Processes (MDPs).mp4

52.9 MB

4 -Markov Decision Processes (MDPs).vtt

11.5 KB

5 -The Return.mp4

24.5 MB

5 -The Return.vtt

5.6 KB

6 -Value Functions and the Bellman Equation.mp4

50.0 MB

6 -Value Functions and the Bellman Equation.vtt

11.2 KB

7 -What does it mean to “learn”.mp4

33.2 MB

7 -What does it mean to “learn”.vtt

8.0 KB

8 -Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4

48.1 MB

8 -Solving the Bellman Equation with Reinforcement Learning (pt 1).vtt

11.5 KB

9 -Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4

58.2 MB

9 -Solving the Bellman Equation with Reinforcement Learning (pt 2).vtt

13.8 KB

/13 - Stock Trading Project with Deep Reinforcement Learning/

1 -Reinforcement Learning Stock Trader Introduction.mp4

30.2 MB

1 -Reinforcement Learning Stock Trader Introduction.vtt

6.1 KB

2 -Data and Environment.mp4

58.4 MB

2 -Data and Environment.vtt

14.1 KB

3 -Replay Buffer.mp4

26.1 MB

3 -Replay Buffer.vtt

6.2 KB

4 -Program Design and Layout.mp4

28.1 MB

4 -Program Design and Layout.vtt

7.8 KB

5 -Code pt 1.mp4

69.6 MB

5 -Code pt 1.vtt

10.8 KB

6 -Code pt 2.mp4

73.4 MB

6 -Code pt 2.vtt

10.5 KB

7 -Code pt 3.mp4

61.4 MB

7 -Code pt 3.vtt

7.6 KB

8 -Code pt 4.mp4

55.1 MB

8 -Code pt 4.vtt

7.5 KB

9 -Reinforcement Learning Stock Trader Discussion.mp4

18.0 MB

9 -Reinforcement Learning Stock Trader Discussion.vtt

4.0 KB

/14 - VIP Uncertainty Estimation/

1 -Custom Loss and Estimating Prediction Uncertainty.mp4

45.6 MB

1 -Custom Loss and Estimating Prediction Uncertainty.vtt

11.5 KB

2 -Estimating Prediction Uncertainty Code.mp4

44.7 MB

2 -Estimating Prediction Uncertainty Code.vtt

7.9 KB

/15 - VIP Facial Recognition/

1 -Facial Recognition Section Introduction.mp4

25.5 MB

1 -Facial Recognition Section Introduction.vtt

4.1 KB

10 -Facial Recognition Section Summary.mp4

19.2 MB

10 -Facial Recognition Section Summary.vtt

4.0 KB

2 -Siamese Networks.mp4

52.9 MB

2 -Siamese Networks.vtt

11.5 KB

3 -Code Outline.mp4

25.0 MB

3 -Code Outline.vtt

5.2 KB

4 -Loading in the data.mp4

36.7 MB

4 -Loading in the data.vtt

6.2 KB

5 -Splitting the data into train and test.mp4

27.5 MB

5 -Splitting the data into train and test.vtt

4.6 KB

6 -Converting the data into pairs.mp4

31.8 MB

6 -Converting the data into pairs.vtt

5.3 KB

7 -Generating Generators.mp4

34.0 MB

7 -Generating Generators.vtt

5.2 KB

8 -Creating the model and loss.mp4

30.8 MB

8 -Creating the model and loss.vtt

4.8 KB

9 -Accuracy and imbalanced classes.mp4

53.6 MB

9 -Accuracy and imbalanced classes.vtt

8.6 KB

/16 - In-Depth Loss Functions/

1 -Mean Squared Error.mp4

35.4 MB

1 -Mean Squared Error.vtt

10.1 KB

2 -Binary Cross Entropy.mp4

24.8 MB

2 -Binary Cross Entropy.vtt

6.5 KB

3 -Categorical Cross Entropy.mp4

33.3 MB

3 -Categorical Cross Entropy.vtt

8.6 KB

/17 - In-Depth Gradient Descent/

1 -Gradient Descent.mp4

36.6 MB

1 -Gradient Descent.vtt

8.8 KB

2 -Stochastic Gradient Descent.mp4

24.1 MB

2 -Stochastic Gradient Descent.vtt

4.9 KB

3 -Momentum.mp4

35.9 MB

3 -Momentum.vtt

7.1 KB

4 -Variable and Adaptive Learning Rates.mp4

36.5 MB

4 -Variable and Adaptive Learning Rates.vtt

13.6 KB

5 -Adam (pt 1).mp4

57.8 MB

5 -Adam (pt 1).vtt

15.0 KB

6 -Adam (pt 2).mp4

55.3 MB

6 -Adam (pt 2).vtt

13.0 KB

/18 - Extras/

1 -Where Are The Exercises.mp4

27.2 MB

1 -Where Are The Exercises.vtt

4.9 KB

/19 - Setting up your Environment (FAQ by Student Request)/

1 -Pre-Installation Check.mp4

23.8 MB

1 -Pre-Installation Check.vtt

5.9 KB

2 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4

158.0 MB

2 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt

12.9 KB

3 -Anaconda Environment Setup.mp4

189.6 MB

3 -Anaconda Environment Setup.vtt

17.8 KB

4 -Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.mp4

175.4 MB

4 -Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.vtt

28.6 KB

/2 - Getting Set Up/

1 -Code Link.url

0.1 KB

1 -Data Links.url

0.1 KB

1 -Github Link.url

0.1 KB

1 -Where to get the code, notebooks, and data.mp4

28.2 MB

1 -Where to get the code, notebooks, and data.vtt

5.7 KB

2 -How to Succeed in This Course.mp4

17.0 MB

2 -How to Succeed in This Course.vtt

4.0 KB

3 -Temporary 403 Errors.mp4

23.0 MB

3 -Temporary 403 Errors.vtt

3.3 KB

/20 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/

1 -Beginner's Coding Tips.mp4

79.4 MB

1 -Beginner's Coding Tips.vtt

17.0 KB

2 -How to Code Yourself (part 1).mp4

75.3 MB

2 -How to Code Yourself (part 1).vtt

20.7 KB

3 -How to Code Yourself (part 2).mp4

51.5 MB

3 -How to Code Yourself (part 2).vtt

11.7 KB

4 -Proof that using Jupyter Notebook is the same as not using it.mp4

72.8 MB

4 -Proof that using Jupyter Notebook is the same as not using it.vtt

12.6 KB

5 -Data Links.url

0.1 KB

5 -Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4

45.7 MB

5 -Get Your Hands Dirty, Practical Coding Experience, Data Links.vtt

10.8 KB

5 -Github Link.url

0.1 KB

6 -How to use Github & Extra Coding Tips (Optional).mp4

67.0 MB

6 -How to use Github & Extra Coding Tips (Optional).vtt

14.1 KB

/21 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/

1 -How to Succeed in this Course (Long Version).mp4

36.9 MB

1 -How to Succeed in this Course (Long Version).vtt

13.1 KB

2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4

110.7 MB

2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt

28.3 KB

3 -Machine Learning and AI Prerequisite Roadmap (pt 1).mp4

83.6 MB

3 -Machine Learning and AI Prerequisite Roadmap (pt 1).vtt

14.5 KB

4 -Machine Learning and AI Prerequisite Roadmap (pt 2).mp4

113.4 MB

4 -Machine Learning and AI Prerequisite Roadmap (pt 2).vtt

20.7 KB

/22 - Appendix FAQ Finale/

1 -What is the Appendix.mp4

17.2 MB

1 -What is the Appendix.vtt

3.4 KB

2 -BONUS.mp4

42.4 MB

2 -BONUS.vtt

7.2 KB

/3 - Google Colab/

1 -Intro to Google Colab, how to use a GPU or TPU for free.mp4

63.4 MB

1 -Intro to Google Colab, how to use a GPU or TPU for free.vtt

12.8 KB

2 -Uploading your own data to Google Colab.mp4

94.9 MB

2 -Uploading your own data to Google Colab.vtt

12.9 KB

3 -Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4

59.8 MB

3 -Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.vtt

13.7 KB

/4 - Machine Learning and Neurons/

1 -What is Machine Learning.mp4

73.9 MB

1 -What is Machine Learning.vtt

16.6 KB

10 -Saving and Loading a Model.mp4

30.2 MB

10 -Saving and Loading a Model.vtt

6.0 KB

11 -A Short Neuroscience Primer.mp4

46.8 MB

11 -A Short Neuroscience Primer.vtt

11.0 KB

12 -How does a model learn.mp4

52.5 MB

12 -How does a model learn.vtt

12.4 KB

13 -Model With Logits.mp4

28.5 MB

13 -Model With Logits.vtt

4.8 KB

14 -Train Sets vs. Validation Sets vs. Test Sets.mp4

54.7 MB

14 -Train Sets vs. Validation Sets vs. Test Sets.vtt

12.8 KB

15 -Suggestion Box.mp4

28.5 MB

15 -Suggestion Box.vtt

4.2 KB

2 -Regression Basics.mp4

76.6 MB

2 -Regression Basics.vtt

17.9 KB

3 -Regression Code Preparation.mp4

47.7 MB

3 -Regression Code Preparation.vtt

14.6 KB

4 -Regression Notebook.mp4

75.4 MB

4 -Regression Notebook.vtt

15.7 KB

5 -Moore's Law.mp4

32.0 MB

5 -Moore's Law.vtt

8.2 KB

6 -Moore's Law Notebook.mp4

82.8 MB

6 -Moore's Law Notebook.vtt

14.2 KB

7 -Linear Classification Basics.mp4

69.0 MB

7 -Linear Classification Basics.vtt

18.3 KB

8 -Classification Code Preparation.mp4

27.8 MB

8 -Classification Code Preparation.vtt

8.5 KB

9 -Classification Notebook.mp4

82.1 MB

9 -Classification Notebook.vtt

13.1 KB

/5 - Feedforward Artificial Neural Networks/

1 -Artificial Neural Networks Section Introduction.mp4

35.0 MB

1 -Artificial Neural Networks Section Introduction.vtt

7.1 KB

10 -ANN for Regression.mp4

84.0 MB

10 -ANN for Regression.vtt

11.6 KB

11 -How to Choose Hyperparameters.mp4

41.4 MB

11 -How to Choose Hyperparameters.vtt

7.7 KB

2 -Forward Propagation.mp4

49.3 MB

2 -Forward Propagation.vtt

10.9 KB

3 -The Geometrical Picture.mp4

59.2 MB

3 -The Geometrical Picture.vtt

10.4 KB

4 -Activation Functions.mp4

93.6 MB

4 -Activation Functions.vtt

20.3 KB

5 -Multiclass Classification.mp4

51.0 MB

5 -Multiclass Classification.vtt

11.0 KB

6 -How to Represent Images.mp4

79.1 MB

6 -How to Represent Images.vtt

13.8 KB

7 -Color Mixing Clarification.mp4

5.1 MB

7 -Color Mixing Clarification.vtt

1.0 KB

8 -Code Preparation (ANN).mp4

69.3 MB

8 -Code Preparation (ANN).vtt

18.3 KB

9 -ANN for Image Classification.mp4

111.5 MB

9 -ANN for Image Classification.vtt

20.3 KB

/6 - Convolutional Neural Networks/

1 -What is Convolution (part 1).mp4

83.6 MB

1 -What is Convolution (part 1).vtt

18.8 KB

10 -CNN for CIFAR-10.mp4

58.0 MB

10 -CNN for CIFAR-10.vtt

8.1 KB

11 -Data Augmentation.mp4

46.6 MB

11 -Data Augmentation.vtt

11.2 KB

12 -Batch Normalization.mp4

24.5 MB

12 -Batch Normalization.vtt

5.9 KB

13 -Improving CIFAR-10 Results.mp4

79.4 MB

13 -Improving CIFAR-10 Results.vtt

11.5 KB

2 -What is Convolution (part 2).mp4

25.2 MB

2 -What is Convolution (part 2).vtt

6.5 KB

3 -What is Convolution (part 3).mp4

31.3 MB

3 -What is Convolution (part 3).vtt

7.2 KB

4 -Convolution on Color Images.mp4

79.3 MB

4 -Convolution on Color Images.vtt

18.8 KB

5 -CNN Architecture.mp4

93.8 MB

5 -CNN Architecture.vtt

24.9 KB

6 -CNN Code Preparation (part 1).mp4

83.8 MB

6 -CNN Code Preparation (part 1).vtt

22.0 KB

7 -CNN Code Preparation (part 2).mp4

38.5 MB

7 -CNN Code Preparation (part 2).vtt

9.5 KB

8 -CNN Code Preparation (part 3).mp4

35.3 MB

8 -CNN Code Preparation (part 3).vtt

6.4 KB

9 -CNN for Fashion MNIST.mp4

77.3 MB

9 -CNN for Fashion MNIST.vtt

12.0 KB

/7 - Recurrent Neural Networks, Time Series, and Sequence Data/

1 -Sequence Data.mp4

119.7 MB

1 -Sequence Data.vtt

26.4 KB

10 -GRU and LSTM (pt 2).mp4

52.9 MB

10 -GRU and LSTM (pt 2).vtt

13.4 KB

11 -A More Challenging Sequence.mp4

91.4 MB

11 -A More Challenging Sequence.vtt

9.5 KB

12 -RNN for Image Classification (Theory).mp4

33.8 MB

12 -RNN for Image Classification (Theory).vtt

5.4 KB

13 -RNN for Image Classification (Code).mp4

21.5 MB

13 -RNN for Image Classification (Code).vtt

2.9 KB

14 -Stock Return Predictions using LSTMs (pt 1).mp4

81.5 MB

14 -Stock Return Predictions using LSTMs (pt 1).vtt

14.3 KB

15 -Stock Return Predictions using LSTMs (pt 2).mp4

45.3 MB

15 -Stock Return Predictions using LSTMs (pt 2).vtt

6.1 KB

16 -Stock Return Predictions using LSTMs (pt 3).mp4

74.6 MB

16 -Stock Return Predictions using LSTMs (pt 3).vtt

12.9 KB

17 -Other Ways to Forecast.mp4

29.7 MB

17 -Other Ways to Forecast.vtt

6.5 KB

2 -Forecasting.mp4

50.7 MB

2 -Forecasting.vtt

12.4 KB

3 -Autoregressive Linear Model for Time Series Prediction.mp4

85.2 MB

3 -Autoregressive Linear Model for Time Series Prediction.vtt

13.1 KB

4 -Proof that the Linear Model Works.mp4

18.7 MB

4 -Proof that the Linear Model Works.vtt

4.1 KB

5 -Recurrent Neural Networks.mp4

97.1 MB

5 -Recurrent Neural Networks.vtt

22.9 KB

6 -RNN Code Preparation.mp4

57.9 MB

6 -RNN Code Preparation.vtt

15.9 KB

7 -RNN for Time Series Prediction.mp4

75.2 MB

7 -RNN for Time Series Prediction.vtt

8.9 KB

8 -Paying Attention to Shapes.mp4

59.1 MB

8 -Paying Attention to Shapes.vtt

9.9 KB

9 -GRU and LSTM (pt 1).mp4

83.7 MB

9 -GRU and LSTM (pt 1).vtt

20.4 KB

/8 - Natural Language Processing (NLP)/

1 -Embeddings.mp4

62.8 MB

1 -Embeddings.vtt

14.4 KB

10 -(Legacy) VIP Making Predictions with a Trained NLP Model.mp4

51.2 MB

10 -(Legacy) VIP Making Predictions with a Trained NLP Model.vtt

8.2 KB

11 -VIP Making Predictions with a Trained NLP Model (V2).mp4

26.7 MB

11 -VIP Making Predictions with a Trained NLP Model (V2).vtt

4.8 KB

2 -Neural Networks with Embeddings.mp4

16.4 MB

2 -Neural Networks with Embeddings.vtt

4.1 KB

3 -Text Preprocessing Concepts.mp4

54.8 MB

3 -Text Preprocessing Concepts.vtt

16.0 KB

4 -Beginner Blues - PyTorch NLP Version.mp4

67.2 MB

4 -Beginner Blues - PyTorch NLP Version.vtt

13.1 KB

4 -Why bad programmers always need the latest version.url

0.1 KB

5 -(Legacy) Text Preprocessing Code Preparation.mp4

46.5 MB

5 -(Legacy) Text Preprocessing Code Preparation.vtt

13.8 KB

6 -(Legacy) Text Preprocessing Code Example.mp4

50.1 MB

6 -(Legacy) Text Preprocessing Code Example.vtt

8.4 KB

7 -Text Classification with LSTMs (V2).mp4

122.9 MB

7 -Text Classification with LSTMs (V2).vtt

18.4 KB

8 -CNNs for Text.mp4

61.2 MB

8 -CNNs for Text.vtt

14.2 KB

9 -Text Classification with CNNs (V2).mp4

57.1 MB

9 -Text Classification with CNNs (V2).vtt

6.4 KB

/9 - Recommender Systems/

1 -Recommender Systems with Deep Learning Theory.mp4

67.9 MB

1 -Recommender Systems with Deep Learning Theory.vtt

12.2 KB

2 -Recommender Systems with Deep Learning Code Preparation.mp4

42.0 MB

2 -Recommender Systems with Deep Learning Code Preparation.vtt

11.4 KB

3 -Recommender Systems with Deep Learning Code (pt 1).mp4

72.9 MB

3 -Recommender Systems with Deep Learning Code (pt 1).vtt

9.8 KB

4 -Recommender Systems with Deep Learning Code (pt 2).mp4

80.5 MB

4 -Recommender Systems with Deep Learning Code (pt 2).vtt

15.6 KB

5 -VIP Making Predictions with a Trained Recommender Model.mp4

34.3 MB

5 -VIP Making Predictions with a Trained Recommender Model.vtt

5.4 KB

 

Total files 306


Copyright © 2025 FileMood.com