FileMood

Download Udemy - The Data Science Course Complete Data Science Bootcamp 2025 (12.2024)

Udemy The Data Science Course Complete Data Science Bootcamp 2025 12 2024

Name

Udemy - The Data Science Course Complete Data Science Bootcamp 2025 (12.2024)

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

9.8 GB

Total Files

1506

Last Seen

2025-07-19 00:12

Hash

3B3FAA780C8E881B100CF6B1CE304E18ED36BB65

/assets/

03. FAQ-The-Data-Science-Course.pdf

313.4 KB

/external-links/

03. Download-all-resources.url

0.1 KB

/01. Part 1 Introduction/

01. A Practical Example What You Will Learn in This Course.mp4

11.3 MB

02. What Does the Course Cover.mp4

10.0 MB

03. Download All Resources and Important FAQ.html

21.9 KB

01. A Practical Example What You Will Learn in This Course.vtt

7.0 KB

02. What Does the Course Cover.vtt

5.6 KB

/assets/

04. 365-DataScience.png

7.3 MB

07. 365-DataScience.png

7.3 MB

04. 365-DataScience-Diagram.pdf

330.8 KB

03. 365-DataScience-Diagram.pdf

330.8 KB

/external-links/

02. Intro-to-Data-Science-Flashcards.url

0.0 KB

01. Intro-to-Data-Science-Flashcards.url

0.0 KB

/02. The Field of Data Science - The Various Data Science Disciplines/

04. Continuing with BI, ML, and AI.mp4

49.9 MB

07. A Breakdown of our Data Science Infographic.mp4

47.6 MB

06. More Examples of Generative AI.mp4

32.0 MB

05. Traditional AI vs. Generative AI.mp4

25.7 MB

01. Data Science and Business Buzzwords Why are there so Many.mp4

16.3 MB

03. Business Analytics, Data Analytics, and Data Science An Introduction.mp4

15.3 MB

02. What is the difference between Analysis and Analytics.mp4

11.7 MB

04. Continuing with BI, ML, and AI.vtt

13.4 KB

03. Business Analytics, Data Analytics, and Data Science An Introduction.vtt

9.9 KB

01. Data Science and Business Buzzwords Why are there so Many.vtt

7.5 KB

05. Traditional AI vs. Generative AI.vtt

7.1 KB

06. More Examples of Generative AI.vtt

7.0 KB

02. What is the difference between Analysis and Analytics.vtt

5.2 KB

07. A Breakdown of our Data Science Infographic.vtt

5.2 KB

/03. The Field of Data Science - Connecting the Data Science Disciplines/

01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4

87.6 MB

01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt

9.5 KB

/04. The Field of Data Science - The Benefits of Each Discipline/

01. The Reason Behind These Disciplines.mp4

49.0 MB

01. The Reason Behind These Disciplines.vtt

6.7 KB

/05. The Field of Data Science - Popular Data Science Techniques/

01. Techniques for Working with Traditional Data.mp4

112.4 MB

07. Techniques for Working with Traditional Methods.mp4

79.7 MB

10. Types of Machine Learning.mp4

72.8 MB

03. Techniques for Working with Big Data.mp4

65.1 MB

05. Business Intelligence (BI) Techniques.mp4

55.5 MB

09. Machine Learning (ML) Techniques.mp4

51.8 MB

08. Real Life Examples of Traditional Methods.mp4

38.5 MB

12. Real Life Examples of Machine Learning (ML).mp4

29.1 MB

11. Evolution and Latest Trends of Machine Learning (ML).mp4

28.7 MB

06. Real Life Examples of Business Intelligence (BI).mp4

25.8 MB

02. Real Life Examples of Traditional Data.mp4

19.3 MB

04. Real Life Examples of Big Data.mp4

13.7 MB

07. Techniques for Working with Traditional Methods.vtt

11.8 KB

01. Techniques for Working with Traditional Data.vtt

11.2 KB

10. Types of Machine Learning.vtt

11.2 KB

09. Machine Learning (ML) Techniques.vtt

9.5 KB

05. Business Intelligence (BI) Techniques.vtt

9.0 KB

11. Evolution and Latest Trends of Machine Learning (ML).vtt

7.9 KB

03. Techniques for Working with Big Data.vtt

6.0 KB

08. Real Life Examples of Traditional Methods.vtt

5.5 KB

12. Real Life Examples of Machine Learning (ML).vtt

3.1 KB

02. Real Life Examples of Traditional Data.vtt

2.4 KB

06. Real Life Examples of Business Intelligence (BI).vtt

2.3 KB

04. Real Life Examples of Big Data.vtt

1.9 KB

/06. The Field of Data Science - Popular Data Science Tools/

01. Necessary Programming Languages and Software Used in Data Science.mp4

86.4 MB

01. Necessary Programming Languages and Software Used in Data Science.vtt

8.2 KB

/07. The Field of Data Science - Careers in Data Science/

01. Finding the Job - What to Expect and What to Look for.mp4

42.0 MB

01. Finding the Job - What to Expect and What to Look for.vtt

4.8 KB

/08. The Field of Data Science - Debunking Common Misconceptions/

01. Debunking Common Misconceptions.mp4

61.7 MB

01. Debunking Common Misconceptions.vtt

5.7 KB

/assets/

01. Course-Notes-Basic-Probability.pdf

380.0 KB

/external-links/

01. Probability-Flashcards.url

0.0 KB

/09. Part 2 Probability/

02. Computing Expected Values.mp4

47.9 MB

03. Frequency.mp4

39.2 MB

01. The Basic Probability Formula.mp4

30.8 MB

04. Events and Their Complements.mp4

27.1 MB

01. The Basic Probability Formula.vtt

9.2 KB

04. Events and Their Complements.vtt

7.3 KB

02. Computing Expected Values.vtt

7.1 KB

03. Frequency.vtt

7.1 KB

/assets/

11. Additional-Exercises-Combinatorics-Solutions.pdf

251.6 KB

01. Course-Notes-Combinatorics.pdf

231.5 KB

06. Combinations-With-Repetition.pdf

212.4 KB

11. Additional-Exercises-Combinatorics.pdf

109.1 KB

07. Symmetry-Explained.pdf

87.1 KB

/10. Probability - Combinatorics/

11. A Practical Example of Combinatorics.mp4

84.6 MB

06. Solving Combinations.mp4

24.8 MB

08. Solving Combinations with Separate Sample Spaces.mp4

21.3 MB

05. Solving Variations without Repetition.mp4

19.1 MB

02. Permutations and How to Use Them.mp4

18.4 MB

09. Combinatorics in Real-Life The Lottery.mp4

17.2 MB

04. Solving Variations with Repetition.mp4

14.6 MB

07. Symmetry of Combinations.mp4

14.4 MB

10. A Recap of Combinatorics.mp4

12.7 MB

03. Simple Operations with Factorials.mp4

11.0 MB

01. Fundamentals of Combinatorics.mp4

6.2 MB

11. A Practical Example of Combinatorics.vtt

15.5 KB

06. Solving Combinations.vtt

6.2 KB

05. Solving Variations without Repetition.vtt

5.1 KB

07. Symmetry of Combinations.vtt

4.6 KB

02. Permutations and How to Use Them.vtt

4.5 KB

09. Combinatorics in Real-Life The Lottery.vtt

4.3 KB

08. Solving Combinations with Separate Sample Spaces.vtt

4.2 KB

10. A Recap of Combinatorics.vtt

3.9 KB

04. Solving Variations with Repetition.vtt

3.8 KB

03. Simple Operations with Factorials.vtt

3.5 KB

01. Fundamentals of Combinatorics.vtt

1.5 KB

/assets/

12. CDS-2017-2018-Hamilton.pdf

865.6 KB

01. Course-Notes-Bayesian-Inference.pdf

395.3 KB

12. Bayesian-Homework-Solutions.pdf

31.1 KB

12. Bayesian-Homework.pdf

27.9 KB

/11. Probability - Bayesian Inference/

12. A Practical Example of Bayesian Inference.mp4

146.0 MB

04. Union of Sets.mp4

25.4 MB

11. Bayes' Law.mp4

22.4 MB

10. The Multiplication Law.mp4

21.2 MB

07. The Conditional Probability Formula.mp4

21.0 MB

01. Sets and Events.mp4

18.5 MB

06. Dependence and Independence of Sets.mp4

15.6 MB

08. The Law of Total Probability.mp4

14.9 MB

02. Ways Sets Can Interact.mp4

11.9 MB

09. The Additive Rule.mp4

11.6 MB

03. Intersection of Sets.mp4

11.6 MB

05. Mutually Exclusive Sets.mp4

11.1 MB

12. A Practical Example of Bayesian Inference.vtt

20.6 KB

11. Bayes' Law.vtt

7.9 KB

04. Union of Sets.vtt

6.4 KB

07. The Conditional Probability Formula.vtt

6.0 KB

01. Sets and Events.vtt

5.6 KB

10. The Multiplication Law.vtt

4.8 KB

02. Ways Sets Can Interact.vtt

4.7 KB

08. The Law of Total Probability.vtt

4.0 KB

06. Dependence and Independence of Sets.vtt

3.6 KB

05. Mutually Exclusive Sets.vtt

2.8 KB

09. The Additive Rule.vtt

2.7 KB

03. Intersection of Sets.vtt

2.7 KB

/assets/

15. FIFA19-post.csv

9.1 MB

15. FIFA19.csv

9.1 MB

01. Course-Notes-Probability-Distributions.pdf

475.1 KB

08. Solving-Integrals.pdf

352.1 KB

07. Poisson-Expected-Value-and-Variance.pdf

149.5 KB

09. Normal-Distribution-Exp-and-Var.pdf

147.5 KB

15. Daily-Views-post.xlsx

20.7 KB

15. Customers-Membership-post.xlsx

16.0 KB

15. Customers-Membership.xlsx

9.9 KB

15. Daily-Views.xlsx

9.8 KB

/12. Probability - Distributions/

15. A Practical Example of Probability Distributions.mp4

145.0 MB

02. Types of Probability Distributions.mp4

37.3 MB

06. Discrete Distributions The Binomial Distribution.mp4

32.1 MB

07. Discrete Distributions The Poisson Distribution.mp4

25.1 MB

08. Characteristics of Continuous Distributions.mp4

22.3 MB

10. Continuous Distributions The Standard Normal Distribution.mp4

22.1 MB

09. Continuous Distributions The Normal Distribution.mp4

21.0 MB

01. Fundamentals of Probability Distributions.mp4

20.4 MB

14. Continuous Distributions The Logistic Distribution.mp4

17.0 MB

13. Continuous Distributions The Exponential Distribution.mp4

16.8 MB

05. Discrete Distributions The Bernoulli Distribution.mp4

15.9 MB

12. Continuous Distributions The Chi-Squared Distribution.mp4

11.7 MB

04. Discrete Distributions The Uniform Distribution.mp4

10.8 MB

03. Characteristics of Discrete Distributions.mp4

9.9 MB

11. Continuous Distributions The Students' T Distribution.mp4

9.7 MB

15. A Practical Example of Probability Distributions.vtt

21.6 KB

02. Types of Probability Distributions.vtt

10.7 KB

08. Characteristics of Continuous Distributions.vtt

9.4 KB

06. Discrete Distributions The Binomial Distribution.vtt

9.0 KB

01. Fundamentals of Probability Distributions.vtt

8.6 KB

07. Discrete Distributions The Poisson Distribution.vtt

7.4 KB

10. Continuous Distributions The Standard Normal Distribution.vtt

5.9 KB

14. Continuous Distributions The Logistic Distribution.vtt

5.5 KB

05. Discrete Distributions The Bernoulli Distribution.vtt

5.3 KB

09. Continuous Distributions The Normal Distribution.vtt

5.2 KB

13. Continuous Distributions The Exponential Distribution.vtt

4.6 KB

11. Continuous Distributions The Students' T Distribution.vtt

3.3 KB

12. Continuous Distributions The Chi-Squared Distribution.vtt

3.1 KB

04. Discrete Distributions The Uniform Distribution.vtt

3.0 KB

03. Characteristics of Discrete Distributions.vtt

2.6 KB

/assets/

03. Probability-Cheat-Sheet.pdf

328.0 KB

01. Probability-in-Finance-Solutions.pdf

188.9 KB

01. Probability-in-Finance-Homework.pdf

113.3 KB

/13. Probability - Probability in Other Fields/

01. Probability in Finance.mp4

42.3 MB

02. Probability in Statistics.mp4

33.1 MB

03. Probability in Data Science.mp4

14.9 MB

01. Probability in Finance.vtt

10.3 KB

02. Probability in Statistics.vtt

9.3 KB

03. Probability in Data Science.vtt

7.3 KB

/assets/

01. Course-notes-descriptive-statistics.pdf

493.8 KB

01. Statistics-Glossary.xlsx

20.8 KB

/external-links/

01. Statistics-Flashcards.url

0.1 KB

/14. Part 3 Statistics/

01. Population and Sample.mp4

36.8 MB

01. Population and Sample.vtt

6.0 KB

/assets/

01. Course-notes-descriptive-statistics.pdf

493.8 KB

04. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf

296.1 KB

08. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf

296.1 KB

04. 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx

42.1 KB

10. 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx

41.4 KB

13. 2.8.Skewness-lesson.xlsx

35.5 KB

03. 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx

31.5 KB

20. 2.11.Covariance-exercise-solution.xlsx

30.2 KB

22. 2.12.Correlation-exercise-solution.xlsx

30.2 KB

22. 2.12.Correlation-exercise.xlsx

30.0 KB

09. 2.6.Cross-table-and-scatter-plot.xlsx

26.7 KB

19. 2.11.Covariance-lesson.xlsx

25.5 KB

20. 2.11.Covariance-exercise.xlsx

20.7 KB

01. Glossary.xlsx

20.4 KB

14. 2.8.Skewness-exercise-solution.xlsx

20.3 KB

07. 2.5.The-Histogram-lesson.xlsx

19.1 KB

08. 2.5.The-Histogram-exercise-solution.xlsx

17.5 KB

10. 2.6.Cross-table-and-scatter-plot-exercise.xlsx

16.7 KB

08. 2.5.The-Histogram-exercise.xlsx

15.9 KB

04. 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx

15.6 KB

06. 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx

13.5 KB

18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx

12.9 KB

18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx

11.9 KB

05. 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx

11.7 KB

12. 2.7.Mean-median-and-mode-exercise-solution.xlsx

11.6 KB

16. 2.9.Variance-exercise-solution.xlsx

11.3 KB

17. 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx

11.2 KB

12. 2.7.Mean-median-and-mode-exercise.xlsx

11.1 KB

16. 2.9.Variance-exercise.xlsx

11.1 KB

11. 2.7.Mean-median-and-mode-lesson.xlsx

10.7 KB

15. 2.9.Variance-lesson.xlsx

10.3 KB

14. 2.8.Skewness-exercise.xlsx

9.7 KB

/15. Statistics - Descriptive Statistics/

01. Types of Data.mp4

45.3 MB

02. Levels of Measurement.mp4

33.8 MB

03. Categorical Variables - Visualization Techniques.mp4

28.8 MB

11. Mean, median and mode.mp4

25.7 MB

15. Variance.mp4

24.7 MB

17. Standard Deviation and Coefficient of Variation.mp4

21.1 MB

09. Cross Tables and Scatter Plots.mp4

20.7 MB

21. Correlation Coefficient.mp4

20.3 MB

19. Covariance.mp4

19.3 MB

05. Numerical Variables - Frequency Distribution Table.mp4

18.6 MB

13. Skewness.mp4

14.0 MB

07. The Histogram.mp4

10.0 MB

15. Variance.vtt

8.4 KB

09. Cross Tables and Scatter Plots.vtt

7.1 KB

03. Categorical Variables - Visualization Techniques.vtt

6.9 KB

17. Standard Deviation and Coefficient of Variation.vtt

6.5 KB

11. Mean, median and mode.vtt

6.1 KB

01. Types of Data.vtt

6.0 KB

19. Covariance.vtt

5.2 KB

21. Correlation Coefficient.vtt

5.1 KB

02. Levels of Measurement.vtt

4.9 KB

05. Numerical Variables - Frequency Distribution Table.vtt

4.6 KB

13. Skewness.vtt

3.8 KB

07. The Histogram.vtt

3.4 KB

16. Variance Exercise.html

0.5 KB

04. Categorical Variables Exercise.html

0.1 KB

18. Standard Deviation and Coefficient of Variation Exercise.html

0.1 KB

06. Numerical Variables Exercise.html

0.1 KB

10. Cross Tables and Scatter Plots Exercise.html

0.1 KB

14. Skewness Exercise.html

0.1 KB

20. Covariance Exercise.html

0.1 KB

08. Histogram Exercise.html

0.1 KB

12. Mean, Median and Mode Exercise.html

0.1 KB

22. Correlation Coefficient Exercise.html

0.1 KB

/assets/

01. 2.13.Practical-example.Descriptive-statistics-lesson.xlsx

150.0 KB

02. 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx

149.9 KB

02. 2.13.Practical-example.Descriptive-statistics-exercise.xlsx

123.2 KB

/16. Statistics - Practical Example Descriptive Statistics/

01. Practical Example Descriptive Statistics.mp4

136.9 MB

01. Practical Example Descriptive Statistics.vtt

21.5 KB

02. Practical Example Descriptive Statistics Exercise.html

0.1 KB

/assets/

02. Course-notes-inferential-statistics.pdf

391.5 KB

01. Course-notes-inferential-statistics.pdf

391.5 KB

05. 3.4.Standard-normal-distribution-exercise-solution.xlsx

24.6 KB

02. 3.2.What-is-a-distribution-lesson.xlsx

19.9 KB

05. 3.4.Standard-normal-distribution-exercise.xlsx

12.3 KB

04. 3.4.Standard-normal-distribution-lesson.xlsx

10.6 KB

/17. Statistics - Inferential Statistics Fundamentals/

08. Estimators and Estimates.mp4

29.0 MB

06. Central Limit Theorem.mp4

24.3 MB

02. What is a Distribution.mp4

18.0 MB

07. Standard error.mp4

14.2 MB

03. The Normal Distribution.mp4

13.7 MB

04. The Standard Normal Distribution.mp4

9.0 MB

01. Introduction.mp4

3.2 MB

02. What is a Distribution.vtt

6.0 KB

06. Central Limit Theorem.vtt

5.7 KB

03. The Normal Distribution.vtt

5.3 KB

04. The Standard Normal Distribution.vtt

4.1 KB

08. Estimators and Estimates.vtt

4.1 KB

07. Standard error.vtt

2.1 KB

01. Introduction.vtt

1.7 KB

05. The Standard Normal Distribution Exercise.html

0.1 KB

/assets/

02. 3.9.The-z-table.xlsx

26.2 KB

03. 3.9.The-z-table.xlsx

26.2 KB

07. 3.11.The-t-table.xlsx

16.2 KB

06. 3.11.The-t-table.xlsx

16.2 KB

10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx

14.6 KB

10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx

14.1 KB

02. 3.9.Population-variance-known-z-score-lesson.xlsx

11.5 KB

03. 3.9.Population-variance-known-z-score-exercise-solution.xlsx

11.4 KB

07. 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx

11.4 KB

03. 3.9.Population-variance-known-z-score-exercise.xlsx

11.1 KB

06. 3.11.Population-variance-unknown-t-score-lesson.xlsx

11.0 KB

07. 3.11.Population-variance-unknown-t-score-exercise.xlsx

10.9 KB

09. 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx

10.7 KB

12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx

10.4 KB

11. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx

10.1 KB

12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx

10.1 KB

14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx

10.0 KB

13. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx

9.7 KB

14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx

9.4 KB

/18. Statistics - Inferential Statistics Confidence Intervals/

02. Confidence Intervals; Population Variance Known; Z-score.mp4

54.7 MB

09. Confidence intervals. Two means. Dependent samples.mp4

47.2 MB

01. What are Confidence Intervals.mp4

30.0 MB

08. Margin of Error.mp4

24.2 MB

04. Confidence Interval Clarifications.mp4

19.9 MB

13. Confidence intervals. Two means. Independent Samples (Part 2).mp4

15.3 MB

06. Confidence Intervals; Population Variance Unknown; T-score.mp4

14.4 MB

05. Student's T Distribution.mp4

14.3 MB

11. Confidence intervals. Two means. Independent Samples (Part 1).mp4

12.6 MB

15. Confidence intervals. Two means. Independent Samples (Part 3).mp4

7.2 MB

02. Confidence Intervals; Population Variance Known; Z-score.vtt

9.8 KB

09. Confidence intervals. Two means. Dependent samples.vtt

8.7 KB

08. Margin of Error.vtt

6.6 KB

11. Confidence intervals. Two means. Independent Samples (Part 1).vtt

6.4 KB

04. Confidence Interval Clarifications.vtt

5.7 KB

06. Confidence Intervals; Population Variance Unknown; T-score.vtt

5.5 KB

13. Confidence intervals. Two means. Independent Samples (Part 2).vtt

4.8 KB

05. Student's T Distribution.vtt

4.7 KB

01. What are Confidence Intervals.vtt

3.3 KB

15. Confidence intervals. Two means. Independent Samples (Part 3).vtt

2.1 KB

03. Confidence Intervals; Population Variance Known; Z-score; Exercise.html

0.1 KB

14. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html

0.1 KB

07. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html

0.1 KB

10. Confidence intervals. Two means. Dependent samples Exercise.html

0.1 KB

12. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html

0.1 KB

/assets/

02. 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx

1.9 MB

01. 3.17.Practical-example.Confidence-intervals-lesson.xlsx

1.8 MB

02. 3.17.Practical-example.Confidence-intervals-exercise.xlsx

1.8 MB

/19. Statistics - Practical Example Inferential Statistics/

01. Practical Example Inferential Statistics.mp4

72.4 MB

01. Practical Example Inferential Statistics.vtt

14.2 KB

02. Practical Example Inferential Statistics Exercise.html

0.1 KB

/assets/

07. Online-p-value-calculator.pdf

1.2 MB

03. Course-notes-hypothesis-testing.pdf

672.2 KB

01. Course-notes-hypothesis-testing.pdf

672.2 KB

08. 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx

14.9 KB

11. 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx

14.7 KB

11. 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx

13.1 KB

09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx

12.9 KB

15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx

11.7 KB

09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx

11.6 KB

13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx

11.5 KB

06. 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx

11.5 KB

06. 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx

11.3 KB

05. 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx

11.2 KB

13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx

11.0 KB

15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx

10.8 KB

10. 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx

10.0 KB

12. 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx

9.9 KB

14. 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx

9.5 KB

/20. Statistics - Hypothesis Testing/

03. Rejection Region and Significance Level.mp4

40.6 MB

05. Test for the Mean. Population Variance Known.mp4

38.7 MB

07. p-value.mp4

35.4 MB

10. Test for the Mean. Dependent Samples.mp4

34.4 MB

01. Null vs Alternative Hypothesis.mp4

33.5 MB

14. Test for the mean. Independent Samples (Part 2).mp4

25.6 MB

08. Test for the Mean. Population Variance Unknown.mp4

20.7 MB

12. Test for the mean. Independent Samples (Part 1).mp4

16.2 MB

04. Type I Error and Type II Error.mp4

16.0 MB

03. Rejection Region and Significance Level.vtt

8.8 KB

05. Test for the Mean. Population Variance Known.vtt

8.3 KB

01. Null vs Alternative Hypothesis.vtt

7.3 KB

10. Test for the Mean. Dependent Samples.vtt

6.9 KB

08. Test for the Mean. Population Variance Unknown.vtt

6.1 KB

04. Type I Error and Type II Error.vtt

5.6 KB

12. Test for the mean. Independent Samples (Part 1).vtt

5.6 KB

14. Test for the mean. Independent Samples (Part 2).vtt

5.5 KB

07. p-value.vtt

5.4 KB

02. Further Reading on Null and Alternative Hypothesis.html

2.3 KB

13. Test for the mean. Independent Samples (Part 1). Exercise.html

0.1 KB

09. Test for the Mean. Population Variance Unknown Exercise.html

0.1 KB

06. Test for the Mean. Population Variance Known Exercise.html

0.1 KB

15. Test for the mean. Independent Samples (Part 2). Exercise.html

0.1 KB

11. Test for the Mean. Dependent Samples Exercise.html

0.1 KB

/assets/

01. 4.10.Hypothesis-testing-section-practical-example.xlsx

53.1 KB

02. 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx

45.3 KB

02. 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx

44.7 KB

/21. Statistics - Practical Example Hypothesis Testing/

01. Practical Example Hypothesis Testing.mp4

48.1 MB

01. Practical Example Hypothesis Testing.vtt

8.8 KB

02. Practical Example Hypothesis Testing Exercise.html

0.1 KB

/assets/

01. Introduction-to-Python-Course-Notes.pdf

2.3 MB

/external-links/

01. Intro-to-Python-Flashcards.url

0.0 KB

/22. Part 4 Introduction to Python/

06. Prerequisites for Coding in the Jupyter Notebooks.mp4

19.9 MB

04. Installing Python and Jupyter.mp4

19.7 MB

01. Introduction to Programming.mp4

15.6 MB

02. Why Python.mp4

12.8 MB

03. Why Jupyter.mp4

8.4 MB

05. Understanding Jupyter's Interface - the Notebook Dashboard.mp4

6.4 MB

06. Prerequisites for Coding in the Jupyter Notebooks.vtt

8.1 KB

01. Introduction to Programming.vtt

7.5 KB

02. Why Python.vtt

7.3 KB

04. Installing Python and Jupyter.vtt

5.0 KB

03. Why Jupyter.vtt

4.3 KB

05. Understanding Jupyter's Interface - the Notebook Dashboard.vtt

3.8 KB

/assets/

01. Introduction-to-Python-Course-Notes.pdf

2.3 MB

03. Strings-Lecture-Py3.ipynb

7.7 KB

03. Strings-Solution-Py3.ipynb

5.6 KB

01. Variables-Solution-Py3.ipynb

3.9 KB

01. Variables-Lecture-Py3.ipynb

3.7 KB

02. Numbers-and-Boolean-Values-Lecture-Py3.ipynb

3.4 KB

02. Numbers-and-Boolean-Values-Solution-Py3.ipynb

3.3 KB

03. Strings-Exercise-Py3.ipynb

2.7 KB

02. Numbers-and-Boolean-Values-Exercise-Py3.ipynb

2.3 KB

01. Variables-Exercise-Py3.ipynb

2.3 KB

/23. Python - Variables and Data Types/

03. Python Strings.mp4

20.7 MB

01. Variables.mp4

9.4 MB

02. Numbers and Boolean Values in Python.mp4

6.9 MB

03. Python Strings.vtt

7.8 KB

01. Variables.vtt

4.9 KB

02. Numbers and Boolean Values in Python.vtt

3.8 KB

/assets/

01. Arithmetic-Operators-Solution-Py3.ipynb

4.3 KB

01. Arithmetic-Operators-Lecture-Py3.ipynb

3.6 KB

03. Reassign-Values-Lecture-Py3.ipynb

3.2 KB

01. Arithmetic-Operators-Exercise-Py3.ipynb

2.7 KB

06. Indexing-Elements-Solution-Py3.ipynb

2.2 KB

03. Reassign-Values-Solution-Py3.ipynb

2.2 KB

03. Reassign-Values-Exercise-Py3.ipynb

1.7 KB

05. Line-Continuation-Solution-Py3.ipynb

1.5 KB

07. Structure-Your-Code-with-Indentation-Solution-Py3.ipynb

1.5 KB

02. The-Double-Equality-Sign-Lecture-Py3.ipynb

1.5 KB

06. Indexing-Elements-Exercise-Py3.ipynb

1.4 KB

06. Indexing-Elements-Lecture-Py3.ipynb

1.3 KB

02. The-Double-Equality-Sign-Solution-Py3.ipynb

1.2 KB

05. Line-Continuation-Exercise-Py3.ipynb

1.2 KB

04. Add-Comments-Lecture-Py3.ipynb

1.1 KB

07. Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb

1.0 KB

07. Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb

1.0 KB

02. The-Double-Equality-Sign-Exercise-Py3.ipynb

0.8 KB

05. Line-Continuation-Lecture-Py3.ipynb

0.8 KB

/24. Python - Basic Python Syntax/

01. Using Arithmetic Operators in Python.mp4

9.0 MB

07. Structuring with Indentation.mp4

2.9 MB

02. The Double Equality Sign.mp4

2.8 MB

04. Add Comments.mp4

2.5 MB

06. Indexing Elements.mp4

2.5 MB

03. How to Reassign Values.mp4

2.0 MB

05. Understanding Line Continuation.mp4

1.3 MB

01. Using Arithmetic Operators in Python.vtt

4.5 KB

07. Structuring with Indentation.vtt

2.4 KB

04. Add Comments.vtt

2.0 KB

02. The Double Equality Sign.vtt

1.9 KB

06. Indexing Elements.vtt

1.7 KB

03. How to Reassign Values.vtt

1.4 KB

05. Understanding Line Continuation.vtt

1.2 KB

/assets/

02. Logical-and-Identity-Operators-Lecture-Py3.ipynb

6.0 KB

02. Logical-and-Identity-Operators-Solution-Py3.ipynb

3.5 KB

01. Comparison-Operators-Lecture-Py3.ipynb

2.6 KB

01. Comparison-Operators-Solution-Py3.ipynb

2.5 KB

01. Comparison-Operators-Exercise-Py3.ipynb

1.6 KB

/25. Python - Other Python Operators/

02. Logical and Identity Operators.mp4

19.9 MB

01. Comparison Operators.mp4

4.4 MB

02. Logical and Identity Operators.vtt

6.1 KB

01. Comparison Operators.vtt

2.6 KB

/assets/

03. Else-If-for-Brief-Elif-Lecture-Py3.ipynb

3.3 KB

03. Else-If-for-Brief-Elif-Solution-Py3.ipynb

2.5 KB

01. Introduction-to-the-If-Statement-Solution-Py3.ipynb

2.2 KB

02. Add-an-Else-Statement-Lecture-Py3.ipynb

1.8 KB

03. Else-If-for-Brief-Elif-Exercise-Py3.ipynb

1.8 KB

01. Introduction-to-the-If-Statement-Exercise-Py3.ipynb

1.6 KB

02. Add-an-Else-Statement-Solution-Py3.ipynb

1.4 KB

01. Introduction-to-the-If-Statement-Lecture-Py3.ipynb

1.2 KB

02. Add-an-Else-Statement-Exercise-Py3.ipynb

1.0 KB

04. A-Note-on-Boolean-Values-Lecture-Py3.ipynb

0.8 KB

/26. Python - Conditional Statements/

03. The ELIF Statement.mp4

14.9 MB

01. The IF Statement.mp4

7.0 MB

02. The ELSE Statement.mp4

6.3 MB

04. A Note on Boolean Values.mp4

4.4 MB

03. The ELIF Statement.vtt

7.0 KB

01. The IF Statement.vtt

3.8 KB

02. The ELSE Statement.vtt

3.3 KB

04. A Note on Boolean Values.vtt

3.2 KB

/assets/

07. Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb

5.7 KB

07. Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb

4.6 KB

07. Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb

3.7 KB

03. Another-Way-to-Define-a-Function-Lecture-Py3.ipynb

3.4 KB

03. Another-Way-to-Define-a-Function-Solution-Py3.ipynb

2.0 KB

02. Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb

1.8 KB

06. Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb

1.8 KB

05. Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb

1.7 KB

04. 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb

1.6 KB

02. Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb

1.6 KB

05. Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb

1.3 KB

03. Another-Way-to-Define-a-Function-Exercise-Py3.ipynb

1.3 KB

02. Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb

1.2 KB

05. Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb

1.1 KB

04. 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb

1.1 KB

04. 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb

1.0 KB

01. Defining-a-Function-in-Python-Lecture-Py3.ipynb

0.9 KB

/27. Python - Python Functions/

07. Built-in Functions in Python.mp4

10.7 MB

02. How to Create a Function with a Parameter.mp4

10.5 MB

03. Defining a Function in Python - Part II.mp4

6.8 MB

05. Conditional Statements and Functions.mp4

6.3 MB

04. How to Use a Function within a Function.mp4

3.4 MB

01. Defining a Function in Python.mp4

3.4 MB

06. Functions Containing a Few Arguments.mp4

2.9 MB

02. How to Create a Function with a Parameter.vtt

4.6 KB

07. Built-in Functions in Python.vtt

4.4 KB

05. Conditional Statements and Functions.vtt

3.7 KB

03. Defining a Function in Python - Part II.vtt

3.1 KB

01. Defining a Function in Python.vtt

2.7 KB

04. How to Use a Function within a Function.vtt

2.1 KB

06. Functions Containing a Few Arguments.vtt

1.5 KB

/assets/

05. Dictionaries-Solution-Py3.ipynb

6.3 KB

03. List-Slicing-Lecture-Py3.ipynb

5.1 KB

04. Tuples-Solution-Py3.ipynb

4.7 KB

02. Help-Yourself-with-Methods-Lecture-Py3.ipynb

4.5 KB

05. Dictionaries-Lecture-Py3.ipynb

4.5 KB

03. List-Slicing-Solution-Py3.ipynb

4.4 KB

01. Lists-Solution-Py3.ipynb

3.3 KB

05. Dictionaries-Exercise-Py3.ipynb

3.0 KB

04. Tuples-Lecture-Py3.ipynb

3.0 KB

02. Help-Yourself-with-Methods-Solution-Py3.ipynb

2.9 KB

03. List-Slicing-Exercise-Py3.ipynb

2.9 KB

01. Lists-Lecture-Py3.ipynb

2.8 KB

01. Lists-Exercise-Py3.ipynb

2.2 KB

04. Tuples-Exercise-Py3.ipynb

2.1 KB

02. Help-Yourself-with-Methods-Exercise-Py3.ipynb

2.0 KB

/28. Python - Sequences/

05. Dictionaries.mp4

34.0 MB

02. Using Methods.mp4

31.8 MB

01. Lists.mp4

24.2 MB

03. List Slicing.mp4

20.1 MB

04. Tuples.mp4

19.1 MB

01. Lists.vtt

10.6 KB

05. Dictionaries.vtt

9.1 KB

02. Using Methods.vtt

8.9 KB

04. Tuples.vtt

7.7 KB

03. List Slicing.vtt

5.7 KB

/assets/

04. Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb

3.0 KB

06. Iterating-over-Dictionaries-Solution-Py3.ipynb

2.9 KB

03. Create-Lists-with-the-range-Function-Solution-Py3.ipynb

2.3 KB

06. Iterating-over-Dictionaries-Exercise-Py3.ipynb

2.2 KB

04. Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb

2.1 KB

04. Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb

2.0 KB

05. All-In-Solution-Py3.ipynb

1.9 KB

01. For-Loops-Solution-Py3.ipynb

1.8 KB

02. While-Loops-and-Incrementing-Solution-Py3.ipynb

1.8 KB

05. All-In-Lecture-Py3.ipynb

1.7 KB

03. Create-Lists-with-the-range-Function-Exercise-Py3.ipynb

1.5 KB

03. Create-Lists-with-the-range-Function-Lecture-Py3.ipynb

1.4 KB

05. All-In-Exercise-Py3.ipynb

1.3 KB

01. For-Loops-Exercise-Py3.ipynb

1.3 KB

01. For-Loops-Lecture-Py3.ipynb

1.3 KB

02. While-Loops-and-Incrementing-Exercise-Py3.ipynb

1.1 KB

02. While-Loops-and-Incrementing-Lecture-Py3.ipynb

1.1 KB

06. Iterating-over-Dictionaries-Lecture-Py3.ipynb

1.1 KB

/29. Python - Iterations/

02. While Loops and Incrementing.mp4

21.2 MB

06. How to Iterate over Dictionaries.mp4

19.3 MB

04. Conditional Statements and Loops.mp4

18.2 MB

03. Lists with the range() Function.mp4

16.8 MB

01. For Loops.mp4

13.6 MB

05. Conditional Statements, Functions, and Loops.mp4

4.5 MB

03. Lists with the range() Function.vtt

8.8 KB

04. Conditional Statements and Loops.vtt

8.2 KB

06. How to Iterate over Dictionaries.vtt

8.0 KB

01. For Loops.vtt

6.9 KB

02. While Loops and Incrementing.vtt

6.2 KB

05. Conditional Statements, Functions, and Loops.vtt

2.5 KB

/30. Python - Advanced Python Tools/

04. Importing Modules in Python.mp4

10.4 MB

01. Object Oriented Programming.mp4

9.1 MB

03. What is the Standard Library.mp4

5.3 MB

02. Modules and Packages.mp4

2.2 MB

01. Object Oriented Programming.vtt

7.0 KB

04. Importing Modules in Python.vtt

5.0 KB

03. What is the Standard Library.vtt

4.0 KB

02. Modules and Packages.vtt

1.5 KB

/assets/

01. Course-notes-regression-analysis.pdf

319.7 KB

/external-links/

01. Advanced-Statistics-Flashcards.url

0.0 KB

/31. Part 5 Advanced Statistical Methods in Python/

01. Introduction to Regression Analysis.mp4

3.8 MB

01. Introduction to Regression Analysis.vtt

2.4 KB

/assets/

01. Course-notes-regression-analysis.pdf

319.7 KB

05. Simple-linear-regression-with-comments.ipynb

4.2 KB

05. Simple-linear-regression.ipynb

3.9 KB

06. Simple-Linear-Regression-Exercise-Solution.ipynb

3.7 KB

06. Simple-Linear-Regression-Exercise.ipynb

2.8 KB

06. real-estate-price-size.csv

1.9 KB

05. 1.01.Simple-linear-regression.csv

0.9 KB

/32. Advanced Statistical Methods - Linear Regression with StatsModels/

05. First Regression in Python.mp4

31.0 MB

08. How to Interpret the Regression Table.mp4

30.1 MB

04. Python Packages Installation.mp4

24.8 MB

10. What is the OLS.mp4

23.6 MB

01. The Linear Regression Model.mp4

14.1 MB

11. R-Squared.mp4

11.7 MB

09. Decomposition of Variability.mp4

9.2 MB

07. Using Seaborn for Graphs.mp4

7.7 MB

02. Correlation vs Regression.mp4

4.0 MB

03. Geometrical Representation of the Linear Regression Model.mp4

2.4 MB

05. First Regression in Python.vtt

8.4 KB

01. The Linear Regression Model.vtt

8.3 KB

11. R-Squared.vtt

7.0 KB

08. How to Interpret the Regression Table.vtt

6.5 KB

04. Python Packages Installation.vtt

5.7 KB

09. Decomposition of Variability.vtt

4.6 KB

10. What is the OLS.vtt

3.9 KB

02. Correlation vs Regression.vtt

2.2 KB

03. Geometrical Representation of the Linear Regression Model.vtt

1.8 KB

07. Using Seaborn for Graphs.vtt

1.6 KB

06. First Regression in Python Exercise.html

1.4 KB

/assets/

12. Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb

18.4 KB

03. Multiple-Linear-Regression-Exercise-Solution.ipynb

13.7 KB

13. Making-predictions-with-comments.ipynb

9.6 KB

11. Dummy-variables-with-comments.ipynb

7.3 KB

13. Making-predictions.ipynb

5.9 KB

11. Dummy-Variables.ipynb

4.7 KB

12. real-estate-price-size-year-view.csv

3.5 KB

12. Multiple-Linear-Regression-with-Dummies-Exercise.ipynb

3.1 KB

02. Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb

2.9 KB

03. Multiple-Linear-Regression-Exercise.ipynb

2.5 KB

03. real-estate-price-size-year.csv

2.4 KB

02. Multiple-linear-regression-and-Adjusted-R-squared.ipynb

2.2 KB

11. 1.03.Dummies.csv

1.2 KB

02. 1.02.Multiple-linear-regression.csv

1.1 KB

/33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/

02. Adjusted R-Squared.mp4

35.9 MB

08. A3 Normality and Homoscedasticity.mp4

28.7 MB

11. Dealing with Categorical Data - Dummy Variables.mp4

23.7 MB

13. Making Predictions with the Linear Regression.mp4

17.1 MB

07. A2 No Endogeneity.mp4

9.7 MB

09. A4 No Autocorrelation.mp4

8.3 MB

10. A5 No Multicollinearity.mp4

8.0 MB

04. Test for Significance of the Model (F-Test).mp4

7.5 MB

01. Multiple Linear Regression.mp4

6.0 MB

05. OLS Assumptions.mp4

5.5 MB

06. A1 Linearity.mp4

3.7 MB

11. Dealing with Categorical Data - Dummy Variables.vtt

9.8 KB

02. Adjusted R-Squared.vtt

7.7 KB

08. A3 Normality and Homoscedasticity.vtt

7.2 KB

07. A2 No Endogeneity.vtt

5.7 KB

09. A4 No Autocorrelation.vtt

5.1 KB

10. A5 No Multicollinearity.vtt

4.7 KB

13. Making Predictions with the Linear Regression.vtt

4.5 KB

01. Multiple Linear Regression.vtt

3.5 KB

05. OLS Assumptions.vtt

3.1 KB

06. A1 Linearity.vtt

2.5 KB

04. Test for Significance of the Model (F-Test).vtt

2.5 KB

03. Multiple Linear Regression Exercise.html

0.1 KB

12. Dealing with Categorical Data - Dummy Variables.html

0.1 KB

/assets/

16. sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb

30.5 KB

04. sklearn-Simple-Linear-Regression-with-comments.ipynb

29.0 KB

06. Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb

27.2 KB

04. sklearn-Simple-Linear-Regression.ipynb

26.7 KB

16. sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb

22.6 KB

15. SKLEAR-1.IPY

17.2 KB

12. sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb

17.0 KB

17. sklearn-Feature-Scaling-Exercise-Solution.ipynb

16.7 KB

13. sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb

15.8 KB

15. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb

15.3 KB

12. sklearn-Multiple-Linear-Regression-Summary-Table.ipynb

14.0 KB

10. sklearn-Feature-Selection-with-F-regression-with-comments.ipynb

13.3 KB

14. SKLEAR-1.IPY

13.2 KB

11. sklearn-How-to-properly-include-p-values.ipynb

13.0 KB

14. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb

12.0 KB

10. sklearn-Feature-Selection-with-F-regression.ipynb

10.7 KB

08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb

10.7 KB

09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb

10.6 KB

09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb

10.1 KB

08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb

9.3 KB

19. sklearn-Train-Test-Split-with-comments.ipynb

9.3 KB

07. sklearn-Multiple-Linear-Regression-with-comments.ipynb

8.9 KB

07. sklearn-Multiple-Linear-Regression.ipynb

8.0 KB

19. sklearn-Train-Test-Split.ipynb

7.4 KB

17. sklearn-Feature-Scaling-Exercise.ipynb

6.2 KB

03. sklearn-Simple-Linear-Regression-with-comments.ipynb

6.2 KB

13. sklearn-Multiple-Linear-Regression-Exercise.ipynb

5.8 KB

03. sklearn-Simple-Linear-Regression.ipynb

5.0 KB

06. Simple-Linear-Regression-with-sklearn-Exercise.ipynb

4.2 KB

17. real-estate-price-size-year.csv

2.4 KB

13. real-estate-price-size-year.csv

2.4 KB

06. real-estate-price-size.csv

1.9 KB

09. 1.02.Multiple-linear-regression.csv

1.1 KB

07. 1.02.Multiple-linear-regression.csv

1.1 KB

14. 1.02.Multiple-linear-regression.csv

1.1 KB

16. 1.02.Multiple-linear-regression.csv

1.1 KB

15. 1.02.Multiple-linear-regression.csv

1.1 KB

08. 1.02.Multiple-linear-regression.csv

1.1 KB

12. 1.02.Multiple-linear-regression.csv

1.1 KB

10. 1.02.Multiple-linear-regression.csv

1.1 KB

11. 1.02.Multiple-linear-regression.csv

1.1 KB

04. 1.01.Simple-linear-regression.csv

0.9 KB

03. 1.01.Simple-linear-regression.csv

0.9 KB

/34. Advanced Statistical Methods - Linear Regression with sklearn/

19. Train - Test Split Explained.mp4

37.3 MB

03. Simple Linear Regression with sklearn.mp4

28.8 MB

15. Feature Selection through Standardization of Weights.mp4

25.7 MB

04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4

23.4 MB

10. Feature Selection (F-regression).mp4

21.5 MB

16. Predicting with the Standardized Coefficients.mp4

21.4 MB

14. Feature Scaling (Standardization).mp4

21.4 MB

08. Calculating the Adjusted R-Squared in sklearn.mp4

17.7 MB

01. What is sklearn and How is it Different from Other Packages.mp4

8.9 MB

07. Multiple Linear Regression with sklearn.mp4

8.7 MB

12. Creating a Summary Table with P-values.mp4

6.8 MB

18. Underfitting and Overfitting.mp4

6.1 MB

02. How are we Going to Approach this Section.mp4

5.6 MB

19. Train - Test Split Explained.vtt

9.9 KB

14. Feature Scaling (Standardization).vtt

9.0 KB

15. Feature Selection through Standardization of Weights.vtt

7.8 KB

03. Simple Linear Regression with sklearn.vtt

7.8 KB

10. Feature Selection (F-regression).vtt

7.1 KB

04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt

6.9 KB

08. Calculating the Adjusted R-Squared in sklearn.vtt

6.8 KB

16. Predicting with the Standardized Coefficients.vtt

5.7 KB

07. Multiple Linear Regression with sklearn.vtt

4.4 KB

18. Underfitting and Overfitting.vtt

3.8 KB

01. What is sklearn and How is it Different from Other Packages.vtt

3.7 KB

12. Creating a Summary Table with P-values.vtt

3.1 KB

02. How are we Going to Approach this Section.vtt

3.1 KB

05. A Note on Normalization.html

0.7 KB

11. A Note on Calculation of P-values with sklearn.html

0.4 KB

06. Simple Linear Regression with sklearn - Exercise.html

0.1 KB

09. Calculating the Adjusted R-Squared in sklearn - Exercise.html

0.1 KB

13. Multiple Linear Regression - Exercise.html

0.1 KB

17. Feature Scaling (Standardization) - Exercise.html

0.1 KB

/assets/

08. sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb

728.1 KB

08. sklearn-Linear-Regression-Practical-Example-Part-5.ipynb

715.1 KB

06. sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb

417.4 KB

06. sklearn-Linear-Regression-Practical-Example-Part-4.ipynb

406.8 KB

05. sklearn-Dummies-and-VIF-Exercise-Solution.ipynb

379.1 KB

04. sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb

359.9 KB

05. sklearn-Dummies-and-VIF-Exercise.ipynb

352.9 KB

04. sklearn-Linear-Regression-Practical-Example-Part-3.ipynb

351.8 KB

02. sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb

343.7 KB

02. sklearn-Linear-Regression-Practical-Example-Part-2.ipynb

336.6 KB

06. 1.04.Real-life-example.csv

225.1 KB

02. 1.04.Real-life-example.csv

225.1 KB

01. 1.04.Real-life-example.csv

225.1 KB

05. 1.04.Real-life-example.csv

225.1 KB

08. 1.04.Real-life-example.csv

225.1 KB

01. sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb

175.5 KB

01. sklearn-Linear-Regression-Practical-Example-Part-1.ipynb

170.9 KB

/external-links/

04. sklearn-Linear-Regression-Practical-Example-Part-3-.url

0.1 KB

/35. Advanced Statistical Methods - Practical Example Linear Regression/

01. Practical Example Linear Regression (Part 1).mp4

88.9 MB

08. Practical Example Linear Regression (Part 5).mp4

52.9 MB

06. Practical Example Linear Regression (Part 4).mp4

41.3 MB

02. Practical Example Linear Regression (Part 2).mp4

33.4 MB

04. Practical Example Linear Regression (Part 3).mp4

17.5 MB

01. Practical Example Linear Regression (Part 1).vtt

15.2 KB

06. Practical Example Linear Regression (Part 4).vtt

12.1 KB

08. Practical Example Linear Regression (Part 5).vtt

11.3 KB

02. Practical Example Linear Regression (Part 2).vtt

8.5 KB

04. Practical Example Linear Regression (Part 3).vtt

4.6 KB

03. A Note on Multicollinearity.html

0.8 KB

07. Dummy Variables - Exercise.html

0.7 KB

09. Linear Regression - Exercise.html

0.5 KB

05. Dummies and Variance Inflation Factor - Exercise.html

0.1 KB

/assets/

01. Course-Notes-Logistic-Regression.pdf

343.2 KB

02. Course-Notes-Logistic-Regression.pdf

343.2 KB

16. Testing-the-Model-Solution.ipynb

113.8 KB

13. Calculating-the-Accuracy-of-the-Model-Solution.ipynb

83.2 KB

11. Bank-data.csv

20.0 KB

13. Bank-data.csv

20.0 KB

16. Bank-data.csv

20.0 KB

08. Bank-data.csv

20.0 KB

12. Accuracy-with-comments.ipynb

12.0 KB

16. Bank-data-testing.csv

8.5 KB

15. Testing-the-model-with-comments.ipynb

7.7 KB

16. Testing-the-Model-Exercise.ipynb

7.0 KB

05. Example-bank-data.csv

6.4 KB

15. Testing-the-model.ipynb

5.9 KB

13. Calculating-the-Accuracy-of-the-Model-Exercise.ipynb

5.5 KB

02. Admittance-with-comments.ipynb

5.4 KB

08. Understanding-Logistic-Regression-Tables-Solution.ipynb

4.9 KB

11. Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb

4.6 KB

05. Building-a-Logistic-Regression-Solution.ipynb

4.6 KB

04. Admittance-regression-tables-fixed-error.ipynb

4.2 KB

12. Accuracy.ipynb

3.7 KB

02. Admittance.ipynb

3.6 KB

08. Understanding-Logistic-Regression-Tables-Exercise.ipynb

3.2 KB

05. Building-a-Logistic-Regression-Exercise.ipynb

3.0 KB

10. 2.02.Binary-predictors.csv

2.6 KB

11. Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb

2.6 KB

04. Admittance-regression-summary-error.ipynb

2.5 KB

10. Binary-predictors.ipynb

2.5 KB

04. Admittance-regression.ipynb

2.1 KB

02. 2.01.Admittance.csv

1.6 KB

15. 2.03.Test-dataset.csv

0.3 KB

/36. Advanced Statistical Methods - Logistic Regression/

10. Binary Predictors in a Logistic Regression.mp4

26.1 MB

03. Logistic vs Logit Function.mp4

24.9 MB

02. A Simple Example in Python.mp4

22.9 MB

15. Testing the Model.mp4

22.6 MB

12. Calculating the Accuracy of the Model.mp4

21.2 MB

06. An Invaluable Coding Tip.mp4

19.7 MB

07. Understanding Logistic Regression Tables.mp4

15.3 MB

09. What do the Odds Actually Mean.mp4

11.9 MB

04. Building a Logistic Regression.mp4

9.0 MB

14. Underfitting and Overfitting.mp4

7.8 MB

01. Introduction to Logistic Regression.mp4

6.2 MB

15. Testing the Model.vtt

6.7 KB

02. A Simple Example in Python.vtt

6.0 KB

07. Understanding Logistic Regression Tables.vtt

5.7 KB

10. Binary Predictors in a Logistic Regression.vtt

5.4 KB

14. Underfitting and Overfitting.vtt

5.3 KB

03. Logistic vs Logit Function.vtt

5.2 KB

09. What do the Odds Actually Mean.vtt

4.5 KB

12. Calculating the Accuracy of the Model.vtt

4.4 KB

04. Building a Logistic Regression.vtt

3.6 KB

06. An Invaluable Coding Tip.vtt

3.2 KB

01. Introduction to Logistic Regression.vtt

1.9 KB

05. Building a Logistic Regression - Exercise.html

0.1 KB

11. Binary Predictors in a Logistic Regression - Exercise.html

0.1 KB

13. Calculating the Accuracy of the Model.html

0.1 KB

08. Understanding Logistic Regression Tables - Exercise.html

0.1 KB

16. Testing the Model - Exercise.html

0.1 KB

/assets/

02. Course-Notes-Cluster-Analysis.pdf

213.7 KB

01. Course-Notes-Cluster-Analysis.pdf

213.7 KB

/37. Advanced Statistical Methods - Cluster Analysis/

02. Some Examples of Clusters.mp4

37.6 MB

01. Introduction to Cluster Analysis.mp4

15.2 MB

03. Difference between Classification and Clustering.mp4

10.1 MB

04. Math Prerequisites.mp4

5.5 MB

02. Some Examples of Clusters.vtt

6.4 KB

01. Introduction to Cluster Analysis.vtt

5.1 KB

04. Math Prerequisites.vtt

4.5 KB

03. Difference between Classification and Clustering.vtt

3.7 KB

/assets/

15. Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb

15.7 KB

15. Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb

11.0 KB

05. Categorical.csv

10.6 KB

07. How-to-Choose-the-Number-of-Clusters-Solution.ipynb

8.7 KB

03. Countries-exercise.csv

8.5 KB

07. Countries-exercise.csv

8.5 KB

06. Selecting-the-number-of-clusters-with-comments.ipynb

7.7 KB

14. Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb

7.5 KB

12. Market-segmentation-example-Part2-with-comments.ipynb

7.0 KB

11. Market-segmentation-example-with-comments.ipynb

6.0 KB

02. Country-clusters-with-comments.ipynb

5.9 KB

04. Categorical-data-with-comments.ipynb

5.8 KB

07. How-to-Choose-the-Number-of-Clusters-Exercise.ipynb

5.7 KB

05. Clustering-Categorical-Data-Solution.ipynb

5.0 KB

12. Market-segmentation-example-Part2.ipynb

4.8 KB

03. A-Simple-Example-of-Clustering-Solution.ipynb

4.8 KB

06. Selecting-the-number-of-clusters.ipynb

4.6 KB

14. Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb

4.6 KB

11. Market-segmentation-example.ipynb

3.9 KB

05. Clustering-Categorical-Data-Exercise.ipynb

3.9 KB

15. iris-with-answers.csv

3.7 KB

03. A-Simple-Example-of-Clustering-Exercise.ipynb

3.7 KB

04. Categorical-data.ipynb

3.4 KB

02. Country-clusters.ipynb

3.4 KB

15. iris-dataset.csv

2.5 KB

14. iris-dataset.csv

2.5 KB

11. 3.12.Example.csv

0.3 KB

02. 3.01.Country-clusters.csv

0.2 KB

/38. Advanced Statistical Methods - K-Means Clustering/

13. How is Clustering Useful.mp4

39.3 MB

02. A Simple Example of Clustering.mp4

35.8 MB

12. Market Segmentation with Cluster Analysis (Part 2).mp4

35.7 MB

11. Market Segmentation with Cluster Analysis (Part 1).mp4

29.4 MB

06. How to Choose the Number of Clusters.mp4

28.2 MB

08. Pros and Cons of K-Means Clustering.mp4

11.7 MB

09. To Standardize or not to Standardize.mp4

11.4 MB

01. K-Means Clustering.mp4

11.3 MB

04. Clustering Categorical Data.mp4

10.9 MB

10. Relationship between Clustering and Regression.mp4

3.7 MB

02. A Simple Example of Clustering.vtt

10.0 KB

12. Market Segmentation with Cluster Analysis (Part 2).vtt

9.4 KB

06. How to Choose the Number of Clusters.vtt

7.7 KB

11. Market Segmentation with Cluster Analysis (Part 1).vtt

7.7 KB

13. How is Clustering Useful.vtt

6.9 KB

01. K-Means Clustering.vtt

6.8 KB

09. To Standardize or not to Standardize.vtt

6.4 KB

08. Pros and Cons of K-Means Clustering.vtt

4.7 KB

04. Clustering Categorical Data.vtt

3.4 KB

10. Relationship between Clustering and Regression.vtt

2.3 KB

05. Clustering Categorical Data - Exercise.html

0.1 KB

03. A Simple Example of Clustering - Exercise.html

0.1 KB

14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html

0.1 KB

15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html

0.1 KB

07. How to Choose the Number of Clusters - Exercise.html

0.1 KB

/assets/

03. Heatmaps-with-comments.ipynb

18.1 KB

03. Heatmaps.ipynb

1.9 KB

03. Country-clusters-standardized.csv

0.2 KB

/39. Advanced Statistical Methods - Other Types of Clustering/

03. Heatmaps.mp4

19.4 MB

02. Dendrogram.mp4

19.2 MB

01. Types of Clustering.mp4

9.4 MB

02. Dendrogram.vtt

7.8 KB

03. Heatmaps.vtt

6.3 KB

01. Types of Clustering.vtt

5.2 KB

/assets/

16. movies-metadata.zip

12.6 MB

13. Marvel-Comics.zip

3.7 MB

16. ratings-small.csv

2.4 MB

10. Properties-analysis.ipynb

293.4 KB

19. interactions.csv

75.0 KB

08. Furniture-store-data-analysis.ipynb

53.6 KB

06. orders.csv

38.6 KB

19. posts.csv

31.5 KB

14. Marvel-Comics-Reg-Ex.ipynb

30.2 KB

17. Movies-Data-Base-Recommendation-Engine.ipynb

20.9 KB

04. Data-Preprocessing-Medical-Data.ipynb

7.7 KB

19. friendships.csv

6.1 KB

12. Students-Hypothesis-Testing.ipynb

5.7 KB

05. Medical-Data-ML-Attempt.ipynb

4.5 KB

19. users.csv

3.6 KB

06. ratings.csv

3.5 KB

05. patients-preprocessed.csv

3.4 KB

04. patients.csv

3.0 KB

10. properties.csv

2.7 KB

12. students.csv

2.1 KB

06. products.csv

1.8 KB

06. customers.csv

1.6 KB

05. diagnosis-mapping.csv

0.1 KB

/40. ChatGPT for Data Science/

05. First attempt at machine learning with ChatGPT.mp4

38.5 MB

10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.mp4

35.3 MB

19. Using ChatGPT for ethical considerations.mp4

35.2 MB

14. Decoding comic book data Python Regular Expressions and ChatGPT.mp4

34.7 MB

04. Data Preprocessing with ChatGPT.mp4

30.1 MB

08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.mp4

28.5 MB

01. Traditional data science methods and the role of ChatGPT.mp4

27.4 MB

06. Analyzing a client database with ChatGPT in Python.mp4

22.7 MB

09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.mp4

22.6 MB

17. Algorithm recommendation recommendation engine for movies with ChatGPT.mp4

18.7 MB

16. Algorithm recommendation Movie Database Analysis with ChatGPT.mp4

18.1 MB

07. Analyzing a client database with ChatGPT in Python – analyzing top products.mp4

15.9 MB

13. Marvels comic book database Intro to Regular Expressions (RegEx).mp4

15.7 MB

18. Ethical principles in data and AI utilization.mp4

15.4 MB

12. Hypothesis testing with ChatGPT.mp4

15.1 MB

03. How ChatGPT can boost your productivity.mp4

5.6 MB

02. How to install ChatGPT.mp4

5.5 MB

10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.vtt

7.7 KB

19. Using ChatGPT for ethical considerations.vtt

7.7 KB

09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.vtt

7.6 KB

01. Traditional data science methods and the role of ChatGPT.vtt

7.4 KB

14. Decoding comic book data Python Regular Expressions and ChatGPT.vtt

6.6 KB

04. Data Preprocessing with ChatGPT.vtt

6.6 KB

05. First attempt at machine learning with ChatGPT.vtt

6.5 KB

17. Algorithm recommendation recommendation engine for movies with ChatGPT.vtt

6.5 KB

08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.vtt

6.0 KB

12. Hypothesis testing with ChatGPT.vtt

5.8 KB

06. Analyzing a client database with ChatGPT in Python.vtt

5.3 KB

07. Analyzing a client database with ChatGPT in Python – analyzing top products.vtt

5.3 KB

16. Algorithm recommendation Movie Database Analysis with ChatGPT.vtt

4.5 KB

18. Ethical principles in data and AI utilization.vtt

4.5 KB

13. Marvels comic book database Intro to Regular Expressions (RegEx).vtt

2.8 KB

03. How ChatGPT can boost your productivity.vtt

2.5 KB

02. How to install ChatGPT.vtt

2.1 KB

11. Assignment 1.html

1.7 KB

15. Assignment 2.html

1.6 KB

/assets/

12. 365-User-Reviews-Naive-Bayes-Sentiment-Analysis.ipynb

1.8 MB

12. user-courses-review-test-set.csv

20.1 KB

/41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/

02. The Naive Bayes Algorithm.mp4

44.1 MB

10. Machine Learning with Naïve Bayes (First Attempt).mp4

29.5 MB

12. Testing the Model on New Data.mp4

21.8 MB

11. Machine Learning with Naïve Bayes – converting the problem to a binary one.mp4

19.8 MB

07. Optimizing User Reviews Data Preprocessing & EDA.mp4

19.6 MB

08. Reg Ex for Analyzing Text Review Data.mp4

17.0 MB

03. Tokenization and Vectorization.mp4

16.6 MB

06. Loading the Dataset and Preprocessing.mp4

15.5 MB

05. Overcome Imbalanced Data in Machine Learning.mp4

15.3 MB

09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.mp4

14.5 MB

01. Intro to the Case Study.mp4

10.9 MB

04. Imbalanced Data Sets.mp4

6.9 MB

10. Machine Learning with Naïve Bayes (First Attempt).vtt

8.6 KB

03. Tokenization and Vectorization.vtt

8.1 KB

12. Testing the Model on New Data.vtt

7.1 KB

11. Machine Learning with Naïve Bayes – converting the problem to a binary one.vtt

6.9 KB

02. The Naive Bayes Algorithm.vtt

6.2 KB

07. Optimizing User Reviews Data Preprocessing & EDA.vtt

6.1 KB

09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.vtt

5.5 KB

08. Reg Ex for Analyzing Text Review Data.vtt

5.2 KB

05. Overcome Imbalanced Data in Machine Learning.vtt

5.2 KB

01. Intro to the Case Study.vtt

3.8 KB

06. Loading the Dataset and Preprocessing.vtt

3.8 KB

04. Imbalanced Data Sets.vtt

3.3 KB

/assets/

04. Scalars-Vectors-and-Matrices.ipynb

4.7 KB

10. Dot-product-Part-2.ipynb

3.7 KB

06. Adding-and-subtracting-matrices.ipynb

3.3 KB

07. Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb

3.2 KB

08. Tranpose-of-a-matrix.ipynb

3.0 KB

09. Dot-product.ipynb

2.2 KB

05. Tensors.ipynb

2.1 KB

/external-links/

01. Math-Flashcards.url

0.1 KB

/42. Part 6 Mathematics/

11. Why is Linear Algebra Useful.mp4

92.8 MB

10. Dot Product of Matrices.mp4

36.0 MB

06. Addition and Subtraction of Matrices.mp4

23.2 MB

04. Arrays in Python - A Convenient Way To Represent Matrices.mp4

19.9 MB

05. What is a Tensor.mp4

16.3 MB

08. Transpose of a Matrix.mp4

14.9 MB

03. Linear Algebra and Geometry.mp4

14.4 MB

09. Dot Product.mp4

13.5 MB

01. What is a Matrix.mp4

12.5 MB

02. Scalars and Vectors.mp4

9.0 MB

07. Errors when Adding Matrices.mp4

6.1 MB

11. Why is Linear Algebra Useful.vtt

11.8 KB

10. Dot Product of Matrices.vtt

9.3 KB

04. Arrays in Python - A Convenient Way To Represent Matrices.vtt

6.4 KB

08. Transpose of a Matrix.vtt

5.7 KB

01. What is a Matrix.vtt

4.7 KB

09. Dot Product.vtt

4.4 KB

06. Addition and Subtraction of Matrices.vtt

4.3 KB

03. Linear Algebra and Geometry.vtt

4.2 KB

02. Scalars and Vectors.vtt

4.1 KB

05. What is a Tensor.vtt

3.9 KB

07. Errors when Adding Matrices.vtt

2.8 KB

/43. Part 7 Deep Learning/

01. What to Expect from this Part.mp4

12.3 MB

01. What to Expect from this Part.vtt

4.9 KB

/assets/

02. Course-Notes-Section-2.pdf

592.0 KB

01. Course-Notes-Section-2.pdf

592.0 KB

11. GD-function-example.xlsx

43.4 KB

/44. Deep Learning - Introduction to Neural Networks/

11. Optimization Algorithm 1-Parameter Gradient Descent.mp4

24.7 MB

12. Optimization Algorithm n-Parameter Gradient Descent.mp4

17.7 MB

06. The Linear model with Multiple Inputs and Multiple Outputs.mp4

17.4 MB

03. Types of Machine Learning.mp4

13.7 MB

01. Introduction to Neural Networks.mp4

11.0 MB

10. Common Objective Functions Cross-Entropy Loss.mp4

10.3 MB

04. The Linear Model (Linear Algebraic Version).mp4

8.4 MB

05. The Linear Model with Multiple Inputs.mp4

8.3 MB

07. Graphical Representation of Simple Neural Networks.mp4

8.2 MB

02. Training the Model.mp4

8.1 MB

08. What is the Objective Function.mp4

6.5 MB

09. Common Objective Functions L2-norm Loss.mp4

5.7 MB

11. Optimization Algorithm 1-Parameter Gradient Descent.vtt

9.0 KB

12. Optimization Algorithm n-Parameter Gradient Descent.vtt

8.0 KB

01. Introduction to Neural Networks.vtt

6.4 KB

03. Types of Machine Learning.vtt

5.6 KB

10. Common Objective Functions Cross-Entropy Loss.vtt

5.5 KB

06. The Linear model with Multiple Inputs and Multiple Outputs.vtt

5.0 KB

02. Training the Model.vtt

4.9 KB

04. The Linear Model (Linear Algebraic Version).vtt

3.8 KB

09. Common Objective Functions L2-norm Loss.vtt

3.0 KB

05. The Linear Model with Multiple Inputs.vtt

2.9 KB

07. Graphical Representation of Simple Neural Networks.vtt

2.8 KB

08. What is the Objective Function.vtt

2.3 KB

/assets/

01. Shortcuts-for-Jupyter.pdf

634.0 KB

05. Minimal-example-Exercise-3.d.Solution.ipynb

86.2 KB

05. Minimal-example-Exercise-3.c.Solution.ipynb

71.8 KB

05. Minimal-example-Exercise-1-Solution.ipynb

70.7 KB

05. Minimal-example-Exercise-5-Solution.ipynb

70.5 KB

05. Minimal-example-Exercise-3.a.Solution.ipynb

69.5 KB

05. Minimal-example-Exercise-3.b.Solution.ipynb

69.3 KB

05. Minimal-example-Exercise-4-Solution.ipynb

68.1 KB

05. Minimal-example-Exercise-6-Solution.ipynb

63.2 KB

05. Minimal-example-Exercise-6.ipynb

63.2 KB

05. Minimal-example-Exercise-2-Solution.ipynb

62.9 KB

05. Minimal-example-All-Exercises.ipynb

13.2 KB

04. Minimal-example-Part-4-Complete.ipynb

11.7 KB

03. Minimal-example-Part-3.ipynb

7.0 KB

02. Minimal-example-Part-2.ipynb

3.7 KB

01. Minimal-example-Part-1.ipynb

1.2 KB

/45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/

04. Basic NN Example (Part 4).mp4

41.9 MB

03. Basic NN Example (Part 3).mp4

16.4 MB

02. Basic NN Example (Part 2).mp4

16.0 MB

01. Basic NN Example (Part 1).mp4

9.8 MB

04. Basic NN Example (Part 4).vtt

11.2 KB

02. Basic NN Example (Part 2).vtt

6.8 KB

01. Basic NN Example (Part 1).vtt

4.6 KB

03. Basic NN Example (Part 3).vtt

4.5 KB

05. Basic NN Example Exercises.html

1.7 KB

/assets/

01. Shortcuts-for-Jupyter.pdf

634.0 KB

09. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb

86.5 KB

09. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb

85.7 KB

09. TensorFlow-Minimal-example-All-exercises.ipynb

85.6 KB

08. TensorFlow-Minimal-example-complete-with-comments.ipynb

84.3 KB

09. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb

79.4 KB

08. TensorFlow-Minimal-example-complete.ipynb

78.7 KB

07. TensorFlow-Minimal-example-Part3.ipynb

78.4 KB

09. TensorFlow-Minimal-example-Exercise-1-Solution.ipynb

28.6 KB

06. TensorFlow-Minimal-example-Part2.ipynb

9.3 KB

05. TensorFlow-Minimal-example-Part1.ipynb

1.7 KB

/46. Deep Learning - TensorFlow 2.0 Introduction/

01. How to Install TensorFlow 2.0.mp4

28.7 MB

06. Outlining the Model with TensorFlow 2.mp4

28.3 MB

07. Interpreting the Result and Extracting the Weights and Bias.mp4

27.2 MB

08. Customizing a TensorFlow 2 Model.mp4

17.6 MB

03. TensorFlow 1 vs TensorFlow 2.mp4

16.0 MB

02. TensorFlow Outline and Comparison with Other Libraries.mp4

16.0 MB

05. Types of File Formats Supporting TensorFlow.mp4

9.3 MB

04. A Note on TensorFlow 2 Syntax.mp4

4.9 MB

06. Outlining the Model with TensorFlow 2.vtt

8.6 KB

07. Interpreting the Result and Extracting the Weights and Bias.vtt

6.9 KB

01. How to Install TensorFlow 2.0.vtt

6.7 KB

02. TensorFlow Outline and Comparison with Other Libraries.vtt

5.6 KB

08. Customizing a TensorFlow 2 Model.vtt

4.4 KB

03. TensorFlow 1 vs TensorFlow 2.vtt

4.1 KB

05. Types of File Formats Supporting TensorFlow.vtt

3.5 KB

04. A Note on TensorFlow 2 Syntax.vtt

1.5 KB

09. Basic NN with TensorFlow Exercises.html

1.3 KB

/assets/

02. Course-Notes-Section-6.pdf

958.9 KB

01. Course-Notes-Section-6.pdf

958.9 KB

09. Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf

186.8 KB

/47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/

03. Digging into a Deep Net.mp4

24.8 MB

04. Non-Linearities and their Purpose.mp4

23.6 MB

07. Backpropagation.mp4

21.3 MB

02. What is a Deep Net.mp4

9.6 MB

05. Activation Functions.mp4

9.3 MB

06. Activation Functions Softmax Activation.mp4

9.2 MB

08. Backpropagation Picture.mp4

8.5 MB

01. What is a Layer.mp4

5.4 MB

03. Digging into a Deep Net.vtt

7.1 KB

05. Activation Functions.vtt

5.4 KB

07. Backpropagation.vtt

4.7 KB

06. Activation Functions Softmax Activation.vtt

4.6 KB

04. Non-Linearities and their Purpose.vtt

4.3 KB

08. Backpropagation Picture.vtt

3.9 KB

02. What is a Deep Net.vtt

3.3 KB

01. What is a Layer.vtt

2.7 KB

09. Backpropagation - A Peek into the Mathematics of Optimization.html

0.5 KB

/48. Deep Learning - Overfitting/

02. Underfitting and Overfitting for Classification.mp4

14.7 MB

01. What is Overfitting.mp4

11.3 MB

06. Early Stopping or When to Stop Training.mp4

10.8 MB

04. Training, Validation, and Test Datasets.mp4

9.9 MB

03. What is Validation.mp4

8.8 MB

05. N-Fold Cross Validation.mp4

6.5 MB

06. Early Stopping or When to Stop Training.vtt

7.1 KB

01. What is Overfitting.vtt

6.0 KB

03. What is Validation.vtt

5.1 KB

05. N-Fold Cross Validation.vtt

4.5 KB

04. Training, Validation, and Test Datasets.vtt

3.5 KB

02. Underfitting and Overfitting for Classification.vtt

2.9 KB

/49. Deep Learning - Initialization/

01. What is Initialization.mp4

9.3 MB

02. Types of Simple Initializations.mp4

6.0 MB

03. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4

5.7 MB

03. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt

3.9 KB

02. Types of Simple Initializations.vtt

3.9 KB

01. What is Initialization.vtt

3.8 KB

/50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/

04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4

18.4 MB

06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4

8.9 MB

01. Stochastic Gradient Descent.mp4

8.2 MB

07. Adam (Adaptive Moment Estimation).mp4

7.5 MB

03. Momentum.mp4

5.4 MB

02. Problems with Gradient Descent.mp4

3.8 MB

05. Learning Rate Schedules Visualized.mp4

3.3 MB

04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt

6.5 KB

06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt

5.7 KB

01. Stochastic Gradient Descent.vtt

4.9 KB

03. Momentum.vtt

3.7 KB

07. Adam (Adaptive Moment Estimation).vtt

3.5 KB

02. Problems with Gradient Descent.vtt

3.1 KB

05. Learning Rate Schedules Visualized.vtt

2.3 KB

/51. Deep Learning - Preprocessing/

03. Standardization.mp4

12.7 MB

01. Preprocessing Introduction.mp4

9.7 MB

05. Binary and One-Hot Encoding.mp4

9.0 MB

04. Preprocessing Categorical Data.mp4

5.7 MB

02. Types of Basic Preprocessing.mp4

3.4 MB

03. Standardization.vtt

6.3 KB

05. Binary and One-Hot Encoding.vtt

5.4 KB

01. Preprocessing Introduction.vtt

4.2 KB

04. Preprocessing Categorical Data.vtt

2.9 KB

02. Types of Basic Preprocessing.vtt

1.9 KB

/assets/

11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb

21.1 KB

11. TensorFlow-MNIST-All-Exercises.ipynb

17.1 KB

11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb

16.2 KB

11. 2.TensorFlow-MNIST-Depth-Solution.ipynb

15.7 KB

11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb

15.7 KB

11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb

15.5 KB

11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb

15.5 KB

11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb

15.5 KB

11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb

15.4 KB

11. 1.TensorFlow-MNIST-Width-Solution.ipynb

15.2 KB

11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb

15.1 KB

12. TensorFlow-MNIST-complete-with-comments.ipynb

14.9 KB

10. TensorFlow-MNIST-Part6-with-comments.ipynb

12.8 KB

09. TensorFlow-MNIST-Part5-with-comments.ipynb

11.2 KB

08. TensorFlow-MNIST-Part4-with-comments.ipynb

10.7 KB

07. TensorFlow-MNIST-Part3-with-comments.ipynb

8.8 KB

12. TensorFlow-MNIST-complete.ipynb

6.9 KB

05. TensorFlow-MNIST-Part2-with-comments.ipynb

6.5 KB

03. TensorFlow-MNIST-Part1-with-comments.ipynb

4.1 KB

/52. Deep Learning - Classifying on the MNIST Dataset/

06. MNIST Preprocess the Data - Shuffle and Batch.mp4

34.3 MB

10. MNIST Learning.mp4

32.5 MB

04. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4

24.0 MB

12. MNIST Testing the Model.mp4

23.7 MB

08. MNIST Outline the Model.mp4

23.1 MB

03. MNIST Importing the Relevant Packages and Loading the Data.mp4

12.8 MB

09. MNIST Select the Loss and the Optimizer.mp4

11.2 MB

02. MNIST How to Tackle the MNIST.mp4

8.3 MB

01. MNIST The Dataset.mp4

4.8 MB

06. MNIST Preprocess the Data - Shuffle and Batch.vtt

9.8 KB

10. MNIST Learning.vtt

8.1 KB

08. MNIST Outline the Model.vtt

7.3 KB

04. MNIST Preprocess the Data - Create a Validation Set and Scale It.vtt

6.7 KB

12. MNIST Testing the Model.vtt

6.1 KB

01. MNIST The Dataset.vtt

3.7 KB

02. MNIST How to Tackle the MNIST.vtt

3.7 KB

03. MNIST Importing the Relevant Packages and Loading the Data.vtt

3.1 KB

09. MNIST Select the Loss and the Optimizer.vtt

3.1 KB

11. MNIST - Exercises.html

2.0 KB

07. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html

0.1 KB

05. MNIST Preprocess the Data - Scale the Test Data - Exercise.html

0.1 KB

/assets/

01. Audiobooks-data.csv

727.8 KB

08. TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb

20.2 KB

11. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb

12.2 KB

12. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb

12.2 KB

04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb

11.5 KB

09. TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb

10.3 KB

05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb

10.3 KB

05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb

8.8 KB

04. TensorFlow-Audiobooks-Preprocessing.ipynb

5.7 KB

07. TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb

4.7 KB

/53. Deep Learning - Business Case Example/

04. Business Case Preprocessing the Data.mp4

77.4 MB

01. Business Case Exploring the Dataset and Identifying Predictors.mp4

53.8 MB

09. Business Case Setting an Early Stopping Mechanism.mp4

45.9 MB

08. Business Case Learning and Interpreting the Result.mp4

30.8 MB

03. Business Case Balancing the Dataset.mp4

23.4 MB

06. Business Case Load the Preprocessed Data.mp4

14.5 MB

11. Business Case Testing the Model.mp4

8.6 MB

02. Business Case Outlining the Solution.mp4

3.2 MB

04. Business Case Preprocessing the Data.vtt

13.9 KB

01. Business Case Exploring the Dataset and Identifying Predictors.vtt

11.3 KB

09. Business Case Setting an Early Stopping Mechanism.vtt

8.3 KB

08. Business Case Learning and Interpreting the Result.vtt

6.5 KB

06. Business Case Load the Preprocessed Data.vtt

4.8 KB

03. Business Case Balancing the Dataset.vtt

4.4 KB

11. Business Case Testing the Model.vtt

2.2 KB

02. Business Case Outlining the Solution.vtt

2.0 KB

12. Business Case Final Exercise.html

0.4 KB

05. Business Case Preprocessing the Data - Exercise.html

0.4 KB

10. Setting an Early Stopping Mechanism - Exercise.html

0.2 KB

07. Business Case Load the Preprocessed Data - Exercise.html

0.1 KB

/54. Deep Learning - Conclusion/

06. An Overview of non-NN Approaches.mp4

16.9 MB

04. An overview of CNNs.mp4

14.0 MB

01. Summary on What You've Learned.mp4

10.3 MB

05. An Overview of RNNs.mp4

7.3 MB

02. What's Further out there in terms of Machine Learning.mp4

5.0 MB

04. An overview of CNNs.vtt

6.5 KB

06. An Overview of non-NN Approaches.vtt

5.9 KB

01. Summary on What You've Learned.vtt

5.6 KB

05. An Overview of RNNs.vtt

4.1 KB

02. What's Further out there in terms of Machine Learning.vtt

2.8 KB

03. DeepMind and Deep Learning.html

1.1 KB

/assets/

05. Shortcuts-for-Jupyter.pdf

634.0 KB

10. TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb

51.2 KB

10. TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb

27.6 KB

10. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb

27.4 KB

10. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb

26.2 KB

10. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb

26.1 KB

10. TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb

24.2 KB

10. TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb

22.3 KB

10. TensorFlow-Minimal-Example-All-Exercises.ipynb

14.3 KB

09. 5.6.TensorFlow-Minimal-example-complete.ipynb

12.4 KB

08. 5.5.TensorFlow-Minimal-example-Part-3.ipynb

8.9 KB

07. 5.4.TensorFlow-Minimal-example-Part-2.ipynb

6.3 KB

06. 5.3.TensorFlow-Minimal-example-Part-1.ipynb

3.4 KB

/55. Appendix Deep Learning - TensorFlow 1 Introduction/

07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4

18.5 MB

09. Basic NN Example with TF Model Output.mp4

17.9 MB

04. TensorFlow Intro.mp4

17.7 MB

08. Basic NN Example with TF Loss Function and Gradient Descent.mp4

14.3 MB

05. Actual Introduction to TensorFlow.mp4

9.5 MB

06. Types of File Formats, supporting Tensors.mp4

9.3 MB

02. How to Install TensorFlow 1.mp4

5.2 MB

07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt

8.2 KB

09. Basic NN Example with TF Model Output.vtt

8.0 KB

04. TensorFlow Intro.vtt

5.5 KB

08. Basic NN Example with TF Loss Function and Gradient Descent.vtt

5.0 KB

06. Types of File Formats, supporting Tensors.vtt

3.5 KB

02. How to Install TensorFlow 1.vtt

3.5 KB

05. Actual Introduction to TensorFlow.vtt

2.4 KB

03. A Note on Installing Packages in Anaconda.html

2.3 KB

10. Basic NN Example with TF Exercises.html

1.6 KB

01. READ ME!!!!.html

0.6 KB

/assets/

11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb

18.1 KB

11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb

17.2 KB

10. TensorFlow-MNIST-Exercises-All.ipynb

15.8 KB

11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb

15.6 KB

11. 2.TensorFlow-MNIST-Depth-Solution.ipynb

15.2 KB

11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb

14.7 KB

11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb

14.6 KB

11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb

14.5 KB

11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb

14.4 KB

11. 1.TensorFlow-MNIST-Width-Solution.ipynb

14.4 KB

11. 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb

14.3 KB

11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb

14.3 KB

09. 12.9.TensorFlow-MNIST-with-comments.ipynb

13.3 KB

08. 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb

11.8 KB

07. 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb

8.7 KB

06. 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb

8.1 KB

05. 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb

7.5 KB

04. 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb

6.2 KB

03. 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb

4.0 KB

/56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/

09. MNIST Results and Testing.mp4

40.0 MB

04. MNIST Model Outline.mp4

36.4 MB

08. MNIST Learning.mp4

33.4 MB

06. Calculating the Accuracy of the Model.mp4

25.6 MB

05. MNIST Loss and Optimization Algorithm.mp4

16.6 MB

03. MNIST Relevant Packages.mp4

11.8 MB

07. MNIST Batching and Early Stopping.mp4

9.9 MB

02. MNIST How to Tackle the MNIST.mp4

8.4 MB

01. MNIST What is the MNIST Dataset.mp4

5.0 MB

08. MNIST Learning.vtt

10.7 KB

04. MNIST Model Outline.vtt

9.4 KB

09. MNIST Results and Testing.vtt

8.4 KB

06. Calculating the Accuracy of the Model.vtt

5.4 KB

02. MNIST How to Tackle the MNIST.vtt

3.9 KB

01. MNIST What is the MNIST Dataset.vtt

3.7 KB

05. MNIST Loss and Optimization Algorithm.vtt

3.7 KB

07. MNIST Batching and Early Stopping.vtt

2.9 KB

11. MNIST Solutions.html

2.3 KB

03. MNIST Relevant Packages.vtt

2.2 KB

10. MNIST Exercises.html

2.2 KB

/assets/

12. Audiobooks-data.csv

727.8 KB

03. Audiobooks-data.csv

727.8 KB

04. Audiobooks-data.csv

727.8 KB

01. Audiobooks-data.csv

727.8 KB

05. Audiobooks-data.csv

727.8 KB

11. Audiobooks-data.csv

727.8 KB

11. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb

14.7 KB

12. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb

14.7 KB

08. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb

13.0 KB

09. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb

13.0 KB

04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb

11.5 KB

12. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb

11.5 KB

11. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb

11.5 KB

08. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb

10.9 KB

09. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb

10.9 KB

07. TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb

10.6 KB

05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb

10.3 KB

07. TensorFlow-Audiobooks-Outlining-the-model.ipynb

9.6 KB

05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb

8.8 KB

04. TensorFlow-Audiobooks-Preprocessing.ipynb

5.7 KB

/57. Appendix Deep Learning - TensorFlow 1 Business Case/

04. Business Case Preprocessing.mp4

78.0 MB

01. Business Case Getting Acquainted with the Dataset.mp4

63.2 MB

06. Creating a Data Provider.mp4

59.0 MB

07. Business Case Model Outline.mp4

44.6 MB

03. The Importance of Working with a Balanced Dataset.mp4

28.6 MB

08. Business Case Optimization.mp4

28.2 MB

11. Business Case A Comment on the Homework.mp4

21.6 MB

09. Business Case Interpretation.mp4

19.5 MB

10. Business Case Testing the Model.mp4

4.6 MB

02. Business Case Outlining the Solution.mp4

4.4 MB

04. Business Case Preprocessing.vtt

13.9 KB

01. Business Case Getting Acquainted with the Dataset.vtt

11.2 KB

06. Creating a Data Provider.vtt

8.5 KB

07. Business Case Model Outline.vtt

7.3 KB

08. Business Case Optimization.vtt

7.1 KB

11. Business Case A Comment on the Homework.vtt

5.5 KB

03. The Importance of Working with a Balanced Dataset.vtt

4.5 KB

09. Business Case Interpretation.vtt

3.2 KB

10. Business Case Testing the Model.vtt

2.8 KB

02. Business Case Outlining the Solution.vtt

2.7 KB

12. Business Case Final Exercise.html

0.4 KB

05. Business Case Preprocessing Exercise.html

0.4 KB

/58. Software Integration/

02. What are Data Connectivity, APIs, and Endpoints.mp4

63.1 MB

03. Taking a Closer Look at APIs.mp4

25.7 MB

01. What are Data, Servers, Clients, Requests, and Responses.mp4

20.5 MB

04. Communication between Software Products through Text Files.mp4

18.4 MB

05. Software Integration - Explained.mp4

16.8 MB

03. Taking a Closer Look at APIs.vtt

11.2 KB

02. What are Data Connectivity, APIs, and Endpoints.vtt

9.4 KB

05. Software Integration - Explained.vtt

7.2 KB

01. What are Data, Servers, Clients, Requests, and Responses.vtt

6.4 KB

04. Communication between Software Products through Text Files.vtt

6.0 KB

/59. Case Study - What's Next in the Course/

03. Introducing the Data Set.mp4

25.4 MB

01. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4

20.6 MB

02. The Business Task.mp4

11.8 MB

01. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt

5.7 KB

03. Introducing the Data Set.vtt

4.4 KB

02. The Business Task.vtt

4.2 KB

/assets/

29. Absenteeism-Exercise-Preprocessing-LECTURES.ipynb

8.0 MB

01. data-preprocessing-homework.pdf

137.7 KB

01. Absenteeism-data.csv

32.8 KB

01. df-preprocessed.csv

29.8 KB

32. Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb

8.7 KB

29. Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb

8.5 KB

29. Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb

7.5 KB

23. Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb

4.9 KB

32. Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb

4.2 KB

/60. Case Study - Preprocessing the 'Absenteeism_data'/

11. Obtaining Dummies from a Single Feature.mp4

73.1 MB

03. Checking the Content of the Data Set.mp4

56.6 MB

16. Classifying the Various Reasons for Absence.mp4

53.8 MB

07. Dropping a Column from a DataFrame in Python.mp4

43.2 MB

26. Analyzing the Dates from the Initial Data Set.mp4

42.1 MB

27. Extracting the Month Value from the Date Column.mp4

35.5 MB

10. Analyzing the Reasons for Absence.mp4

29.0 MB

17. Using .concat() in Python.mp4

28.7 MB

31. Working on Education, Children, and Pets.mp4

28.3 MB

02. Importing the Absenteeism Data in Python.mp4

20.5 MB

28. Extracting the Day of the Week from the Date Column.mp4

20.1 MB

04. Introduction to Terms with Multiple Meanings.mp4

18.9 MB

23. Creating Checkpoints while Coding in Jupyter.mp4

18.2 MB

30. Analyzing Several Straightforward Columns for this Exercise.mp4

15.0 MB

32. Final Remarks of this Section.mp4

14.2 MB

20. Reordering Columns in a Pandas DataFrame in Python.mp4

10.5 MB

06. Using a Statistical Approach towards the Solution to the Exercise.mp4

10.4 MB

15. More on Dummy Variables A Statistical Perspective.mp4

6.1 MB

11. Obtaining Dummies from a Single Feature.vtt

10.8 KB

16. Classifying the Various Reasons for Absence.vtt

10.8 KB

26. Analyzing the Dates from the Initial Data Set.vtt

9.1 KB

07. Dropping a Column from a DataFrame in Python.vtt

8.4 KB

27. Extracting the Month Value from the Date Column.vtt

8.2 KB

03. Checking the Content of the Data Set.vtt

7.3 KB

10. Analyzing the Reasons for Absence.vtt

6.2 KB

31. Working on Education, Children, and Pets.vtt

6.1 KB

17. Using .concat() in Python.vtt

5.3 KB

28. Extracting the Day of the Week from the Date Column.vtt

4.9 KB

30. Analyzing Several Straightforward Columns for this Exercise.vtt

4.7 KB

04. Introduction to Terms with Multiple Meanings.vtt

4.4 KB

02. Importing the Absenteeism Data in Python.vtt

4.1 KB

23. Creating Checkpoints while Coding in Jupyter.vtt

3.8 KB

06. Using a Statistical Approach towards the Solution to the Exercise.vtt

3.1 KB

05. What's Regression Analysis - a Quick Refresher.html

2.9 KB

32. Final Remarks of this Section.vtt

2.7 KB

01. What to Expect from the Following Sections.html

2.5 KB

14. Dropping a Dummy Variable from the Data Set.html

2.4 KB

20. Reordering Columns in a Pandas DataFrame in Python.vtt

1.9 KB

15. More on Dummy Variables A Statistical Perspective.vtt

1.7 KB

29. EXERCISE - Removing the Date Column.html

1.2 KB

33. A Note on Exporting Your Data as a .csv File.html

0.9 KB

08. EXERCISE - Dropping a Column from a DataFrame in Python.html

0.9 KB

22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html

0.5 KB

18. EXERCISE - Using .concat() in Python.html

0.2 KB

21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html

0.2 KB

19. SOLUTION - Using .concat() in Python.html

0.1 KB

24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html

0.1 KB

12. EXERCISE - Obtaining Dummies from a Single Feature.html

0.1 KB

25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html

0.1 KB

13. SOLUTION - Obtaining Dummies from a Single Feature.html

0.1 KB

09. SOLUTION - Dropping a Column from a DataFrame in Python.html

0.1 KB

/assets/

01. Absenteeism-preprocessed.csv

29.8 KB

/external-links/

11. Logistic-Regression-prior-to-Backward-Elimination.url

0.2 KB

09. Logistic-Regression-prior-to-Custom-Scaler.url

0.2 KB

15. Logistic-Regression-with-Comments.url

0.2 KB

15. Logistic-Regression.url

0.2 KB

/61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/

08. Interpreting the Coefficients for Our Problem.mp4

43.1 MB

05. Splitting the Data for Training and Testing.mp4

37.8 MB

02. Creating the Targets for the Logistic Regression.mp4

34.0 MB

11. Backward Elimination or How to Simplify Your Model.mp4

33.4 MB

12. Testing the Model We Created.mp4

33.1 MB

16. Preparing the Deployment of the Model through a Module.mp4

29.9 MB

07. Creating a Summary Table with the Coefficients and Intercept.mp4

28.3 MB

13. Saving the Model and Preparing it for Deployment.mp4

26.8 MB

09. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4

17.7 MB

06. Fitting the Model and Assessing its Accuracy.mp4

16.0 MB

10. Interpreting the Coefficients of the Logistic Regression.mp4

15.9 MB

04. Standardizing the Data.mp4

15.9 MB

01. Exploring the Problem with a Machine Learning Mindset.mp4

13.6 MB

03. Selecting the Inputs for the Logistic Regression.mp4

9.1 MB

02. Creating the Targets for the Logistic Regression.vtt

8.9 KB

08. Interpreting the Coefficients for Our Problem.vtt

8.7 KB

05. Splitting the Data for Training and Testing.vtt

8.7 KB

10. Interpreting the Coefficients of the Logistic Regression.vtt

7.7 KB

06. Fitting the Model and Assessing its Accuracy.vtt

7.5 KB

12. Testing the Model We Created.vtt

6.7 KB

07. Creating a Summary Table with the Coefficients and Intercept.vtt

6.5 KB

16. Preparing the Deployment of the Model through a Module.vtt

6.0 KB

13. Saving the Model and Preparing it for Deployment.vtt

5.9 KB

11. Backward Elimination or How to Simplify Your Model.vtt

5.5 KB

09. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt

5.4 KB

01. Exploring the Problem with a Machine Learning Mindset.vtt

4.9 KB

04. Standardizing the Data.vtt

4.4 KB

03. Selecting the Inputs for the Logistic Regression.vtt

3.7 KB

14. ARTICLE - A Note on 'pickling'.html

2.2 KB

15. EXERCISE - Saving the Model (and Scaler).html

0.3 KB

/assets/

01. Absenteeism-Exercise-Integration.ipynb

63.8 KB

01. absenteeism-module.py

6.8 KB

01. Absenteeism-new-data.csv

1.9 KB

01. scaler

1.9 KB

01. model

1.0 KB

04. Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb

1.0 KB

/62. Case Study - Loading the 'absenteeism_module'/

03. Deploying the 'absenteeism_module' - Part II.mp4

47.3 MB

02. Deploying the 'absenteeism_module' - Part I.mp4

20.6 MB

03. Deploying the 'absenteeism_module' - Part II.vtt

8.2 KB

02. Deploying the 'absenteeism_module' - Part I.vtt

5.1 KB

04. Exporting the Obtained Data Set as a .csv.html

1.0 KB

01. Are You Sure You're All Set.html

0.5 KB

/assets/

02. Absenteeism-predictions.csv

2.2 KB

01. Absenteeism-predictions.csv

2.2 KB

/63. Case Study - Analyzing the Predicted Outputs in Tableau/

04. Analyzing Reasons vs Probability in Tableau.mp4

42.2 MB

02. Analyzing Age vs Probability in Tableau.mp4

40.6 MB

06. Analyzing Transportation Expense vs Probability in Tableau.mp4

17.3 MB

02. Analyzing Age vs Probability in Tableau.vtt

10.5 KB

04. Analyzing Reasons vs Probability in Tableau.vtt

9.9 KB

06. Analyzing Transportation Expense vs Probability in Tableau.vtt

7.8 KB

05. EXERCISE - Transportation Expense vs Probability.html

0.6 KB

03. EXERCISE - Reasons vs Probability.html

0.4 KB

01. EXERCISE - Age vs Probability.html

0.4 KB

/assets/

01. Additional-Python-Tools-Solutions.ipynb

26.1 KB

06. Additional-Python-Tools-Solutions.ipynb

26.1 KB

06. Additional-Python-Tools-Lectures.ipynb

13.8 KB

01. Additional-Python-Tools-Lectures.ipynb

13.8 KB

06. Additional-Python-Tools-Exercises.ipynb

11.7 KB

01. Additional-Python-Tools-Exercises.ipynb

11.7 KB

/64. Appendix - Additional Python Tools/

05. List Comprehensions.mp4

45.3 MB

04. Triple Nested For Loops.mp4

34.6 MB

01. Using the .format() Method.mp4

26.9 MB

06. Anonymous (Lambda) Functions.mp4

23.9 MB

02. Iterating Over Range Objects.mp4

13.2 MB

03. Introduction to Nested For Loops.mp4

12.8 MB

05. List Comprehensions.vtt

13.1 KB

01. Using the .format() Method.vtt

13.0 KB

06. Anonymous (Lambda) Functions.vtt

10.7 KB

03. Introduction to Nested For Loops.vtt

8.7 KB

04. Triple Nested For Loops.vtt

8.7 KB

02. Iterating Over Range Objects.vtt

6.6 KB

/assets/

13. Sales-products.csv

155.9 KB

01. Sales-products.csv

155.9 KB

13. pandas-Fundamentals-Solutions.ipynb

121.2 KB

01. pandas-Fundamentals-Solutions.ipynb

121.2 KB

13. Lending-company.csv

115.1 KB

01. Lending-company.csv

115.1 KB

13. pandas-Fundamentals-Exercises.ipynb

31.7 KB

01. pandas-Fundamentals-Exercises.ipynb

31.7 KB

13. pandas-Fundamentals-Lectures.ipynb

21.8 KB

01. pandas-Fundamentals-Lectures.ipynb

21.8 KB

13. Location.csv

13.8 KB

01. Location.csv

13.8 KB

13. Region.csv

10.5 KB

01. Region.csv

10.5 KB

/65. Appendix - pandas Fundamentals/

11. Data Selection in pandas DataFrames.mp4

39.1 MB

12. pandas DataFrames - Indexing with .iloc[].mp4

33.8 MB

10. pandas DataFrames - Common Attributes.mp4

26.9 MB

01. Introduction to pandas Series.mp4

26.2 MB

06. Using .unique() and .nunique().mp4

25.5 MB

05. Parameters and Arguments in pandas.mp4

22.2 MB

13. pandas DataFrames - Indexing with .loc[].mp4

21.7 MB

09. Introduction to pandas DataFrames - Part II.mp4

18.7 MB

07. Using .sort_values().mp4

16.0 MB

03. Working with Methods in Python - Part I.mp4

13.9 MB

08. Introduction to pandas DataFrames - Part I.mp4

13.1 MB

04. Working with Methods in Python - Part II.mp4

9.4 MB

01. Introduction to pandas Series.vtt

11.1 KB

11. Data Selection in pandas DataFrames.vtt

10.8 KB

12. pandas DataFrames - Indexing with .iloc[].vtt

8.5 KB

09. Introduction to pandas DataFrames - Part II.vtt

8.2 KB

08. Introduction to pandas DataFrames - Part I.vtt

7.5 KB

03. Working with Methods in Python - Part I.vtt

7.4 KB

10. pandas DataFrames - Common Attributes.vtt

6.7 KB

06. Using .unique() and .nunique().vtt

6.0 KB

05. Parameters and Arguments in pandas.vtt

5.9 KB

07. Using .sort_values().vtt

5.7 KB

13. pandas DataFrames - Indexing with .loc[].vtt

5.7 KB

04. Working with Methods in Python - Part II.vtt

4.0 KB

02. A Note on Completing the Upcoming Coding Exercises.html

3.0 KB

/assets/

01. 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf

16.3 MB

/66. Bonus Lecture/

01. Bonus Lecture Next Steps.html

4.4 KB

 

Total files 1506


Copyright © 2025 FileMood.com