/assets/
|
03. FAQ-The-Data-Science-Course.pdf
|
313.4 KB
|
/external-links/
|
03. Download-all-resources.url
|
0.1 KB
|
/01. Part 1 Introduction/
|
01. A Practical Example What You Will Learn in This Course.mp4
|
11.3 MB
|
02. What Does the Course Cover.mp4
|
10.0 MB
|
03. Download All Resources and Important FAQ.html
|
21.9 KB
|
01. A Practical Example What You Will Learn in This Course.vtt
|
7.0 KB
|
02. What Does the Course Cover.vtt
|
5.6 KB
|
/assets/
|
04. 365-DataScience.png
|
7.3 MB
|
07. 365-DataScience.png
|
7.3 MB
|
04. 365-DataScience-Diagram.pdf
|
330.8 KB
|
03. 365-DataScience-Diagram.pdf
|
330.8 KB
|
/external-links/
|
02. Intro-to-Data-Science-Flashcards.url
|
0.0 KB
|
01. Intro-to-Data-Science-Flashcards.url
|
0.0 KB
|
/02. The Field of Data Science - The Various Data Science Disciplines/
|
04. Continuing with BI, ML, and AI.mp4
|
49.9 MB
|
07. A Breakdown of our Data Science Infographic.mp4
|
47.6 MB
|
06. More Examples of Generative AI.mp4
|
32.0 MB
|
05. Traditional AI vs. Generative AI.mp4
|
25.7 MB
|
01. Data Science and Business Buzzwords Why are there so Many.mp4
|
16.3 MB
|
03. Business Analytics, Data Analytics, and Data Science An Introduction.mp4
|
15.3 MB
|
02. What is the difference between Analysis and Analytics.mp4
|
11.7 MB
|
04. Continuing with BI, ML, and AI.vtt
|
13.4 KB
|
03. Business Analytics, Data Analytics, and Data Science An Introduction.vtt
|
9.9 KB
|
01. Data Science and Business Buzzwords Why are there so Many.vtt
|
7.5 KB
|
05. Traditional AI vs. Generative AI.vtt
|
7.1 KB
|
06. More Examples of Generative AI.vtt
|
7.0 KB
|
02. What is the difference between Analysis and Analytics.vtt
|
5.2 KB
|
07. A Breakdown of our Data Science Infographic.vtt
|
5.2 KB
|
/03. The Field of Data Science - Connecting the Data Science Disciplines/
|
01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4
|
87.6 MB
|
01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt
|
9.5 KB
|
/04. The Field of Data Science - The Benefits of Each Discipline/
|
01. The Reason Behind These Disciplines.mp4
|
49.0 MB
|
01. The Reason Behind These Disciplines.vtt
|
6.7 KB
|
/05. The Field of Data Science - Popular Data Science Techniques/
|
01. Techniques for Working with Traditional Data.mp4
|
112.4 MB
|
07. Techniques for Working with Traditional Methods.mp4
|
79.7 MB
|
10. Types of Machine Learning.mp4
|
72.8 MB
|
03. Techniques for Working with Big Data.mp4
|
65.1 MB
|
05. Business Intelligence (BI) Techniques.mp4
|
55.5 MB
|
09. Machine Learning (ML) Techniques.mp4
|
51.8 MB
|
08. Real Life Examples of Traditional Methods.mp4
|
38.5 MB
|
12. Real Life Examples of Machine Learning (ML).mp4
|
29.1 MB
|
11. Evolution and Latest Trends of Machine Learning (ML).mp4
|
28.7 MB
|
06. Real Life Examples of Business Intelligence (BI).mp4
|
25.8 MB
|
02. Real Life Examples of Traditional Data.mp4
|
19.3 MB
|
04. Real Life Examples of Big Data.mp4
|
13.7 MB
|
07. Techniques for Working with Traditional Methods.vtt
|
11.8 KB
|
01. Techniques for Working with Traditional Data.vtt
|
11.2 KB
|
10. Types of Machine Learning.vtt
|
11.2 KB
|
09. Machine Learning (ML) Techniques.vtt
|
9.5 KB
|
05. Business Intelligence (BI) Techniques.vtt
|
9.0 KB
|
11. Evolution and Latest Trends of Machine Learning (ML).vtt
|
7.9 KB
|
03. Techniques for Working with Big Data.vtt
|
6.0 KB
|
08. Real Life Examples of Traditional Methods.vtt
|
5.5 KB
|
12. Real Life Examples of Machine Learning (ML).vtt
|
3.1 KB
|
02. Real Life Examples of Traditional Data.vtt
|
2.4 KB
|
06. Real Life Examples of Business Intelligence (BI).vtt
|
2.3 KB
|
04. Real Life Examples of Big Data.vtt
|
1.9 KB
|
/06. The Field of Data Science - Popular Data Science Tools/
|
01. Necessary Programming Languages and Software Used in Data Science.mp4
|
86.4 MB
|
01. Necessary Programming Languages and Software Used in Data Science.vtt
|
8.2 KB
|
/07. The Field of Data Science - Careers in Data Science/
|
01. Finding the Job - What to Expect and What to Look for.mp4
|
42.0 MB
|
01. Finding the Job - What to Expect and What to Look for.vtt
|
4.8 KB
|
/08. The Field of Data Science - Debunking Common Misconceptions/
|
01. Debunking Common Misconceptions.mp4
|
61.7 MB
|
01. Debunking Common Misconceptions.vtt
|
5.7 KB
|
/assets/
|
01. Course-Notes-Basic-Probability.pdf
|
380.0 KB
|
/external-links/
|
01. Probability-Flashcards.url
|
0.0 KB
|
/09. Part 2 Probability/
|
02. Computing Expected Values.mp4
|
47.9 MB
|
03. Frequency.mp4
|
39.2 MB
|
01. The Basic Probability Formula.mp4
|
30.8 MB
|
04. Events and Their Complements.mp4
|
27.1 MB
|
01. The Basic Probability Formula.vtt
|
9.2 KB
|
04. Events and Their Complements.vtt
|
7.3 KB
|
02. Computing Expected Values.vtt
|
7.1 KB
|
03. Frequency.vtt
|
7.1 KB
|
/assets/
|
11. Additional-Exercises-Combinatorics-Solutions.pdf
|
251.6 KB
|
01. Course-Notes-Combinatorics.pdf
|
231.5 KB
|
06. Combinations-With-Repetition.pdf
|
212.4 KB
|
11. Additional-Exercises-Combinatorics.pdf
|
109.1 KB
|
07. Symmetry-Explained.pdf
|
87.1 KB
|
/10. Probability - Combinatorics/
|
11. A Practical Example of Combinatorics.mp4
|
84.6 MB
|
06. Solving Combinations.mp4
|
24.8 MB
|
08. Solving Combinations with Separate Sample Spaces.mp4
|
21.3 MB
|
05. Solving Variations without Repetition.mp4
|
19.1 MB
|
02. Permutations and How to Use Them.mp4
|
18.4 MB
|
09. Combinatorics in Real-Life The Lottery.mp4
|
17.2 MB
|
04. Solving Variations with Repetition.mp4
|
14.6 MB
|
07. Symmetry of Combinations.mp4
|
14.4 MB
|
10. A Recap of Combinatorics.mp4
|
12.7 MB
|
03. Simple Operations with Factorials.mp4
|
11.0 MB
|
01. Fundamentals of Combinatorics.mp4
|
6.2 MB
|
11. A Practical Example of Combinatorics.vtt
|
15.5 KB
|
06. Solving Combinations.vtt
|
6.2 KB
|
05. Solving Variations without Repetition.vtt
|
5.1 KB
|
07. Symmetry of Combinations.vtt
|
4.6 KB
|
02. Permutations and How to Use Them.vtt
|
4.5 KB
|
09. Combinatorics in Real-Life The Lottery.vtt
|
4.3 KB
|
08. Solving Combinations with Separate Sample Spaces.vtt
|
4.2 KB
|
10. A Recap of Combinatorics.vtt
|
3.9 KB
|
04. Solving Variations with Repetition.vtt
|
3.8 KB
|
03. Simple Operations with Factorials.vtt
|
3.5 KB
|
01. Fundamentals of Combinatorics.vtt
|
1.5 KB
|
/assets/
|
12. CDS-2017-2018-Hamilton.pdf
|
865.6 KB
|
01. Course-Notes-Bayesian-Inference.pdf
|
395.3 KB
|
12. Bayesian-Homework-Solutions.pdf
|
31.1 KB
|
12. Bayesian-Homework.pdf
|
27.9 KB
|
/11. Probability - Bayesian Inference/
|
12. A Practical Example of Bayesian Inference.mp4
|
146.0 MB
|
04. Union of Sets.mp4
|
25.4 MB
|
11. Bayes' Law.mp4
|
22.4 MB
|
10. The Multiplication Law.mp4
|
21.2 MB
|
07. The Conditional Probability Formula.mp4
|
21.0 MB
|
01. Sets and Events.mp4
|
18.5 MB
|
06. Dependence and Independence of Sets.mp4
|
15.6 MB
|
08. The Law of Total Probability.mp4
|
14.9 MB
|
02. Ways Sets Can Interact.mp4
|
11.9 MB
|
09. The Additive Rule.mp4
|
11.6 MB
|
03. Intersection of Sets.mp4
|
11.6 MB
|
05. Mutually Exclusive Sets.mp4
|
11.1 MB
|
12. A Practical Example of Bayesian Inference.vtt
|
20.6 KB
|
11. Bayes' Law.vtt
|
7.9 KB
|
04. Union of Sets.vtt
|
6.4 KB
|
07. The Conditional Probability Formula.vtt
|
6.0 KB
|
01. Sets and Events.vtt
|
5.6 KB
|
10. The Multiplication Law.vtt
|
4.8 KB
|
02. Ways Sets Can Interact.vtt
|
4.7 KB
|
08. The Law of Total Probability.vtt
|
4.0 KB
|
06. Dependence and Independence of Sets.vtt
|
3.6 KB
|
05. Mutually Exclusive Sets.vtt
|
2.8 KB
|
09. The Additive Rule.vtt
|
2.7 KB
|
03. Intersection of Sets.vtt
|
2.7 KB
|
/assets/
|
15. FIFA19-post.csv
|
9.1 MB
|
15. FIFA19.csv
|
9.1 MB
|
01. Course-Notes-Probability-Distributions.pdf
|
475.1 KB
|
08. Solving-Integrals.pdf
|
352.1 KB
|
07. Poisson-Expected-Value-and-Variance.pdf
|
149.5 KB
|
09. Normal-Distribution-Exp-and-Var.pdf
|
147.5 KB
|
15. Daily-Views-post.xlsx
|
20.7 KB
|
15. Customers-Membership-post.xlsx
|
16.0 KB
|
15. Customers-Membership.xlsx
|
9.9 KB
|
15. Daily-Views.xlsx
|
9.8 KB
|
/12. Probability - Distributions/
|
15. A Practical Example of Probability Distributions.mp4
|
145.0 MB
|
02. Types of Probability Distributions.mp4
|
37.3 MB
|
06. Discrete Distributions The Binomial Distribution.mp4
|
32.1 MB
|
07. Discrete Distributions The Poisson Distribution.mp4
|
25.1 MB
|
08. Characteristics of Continuous Distributions.mp4
|
22.3 MB
|
10. Continuous Distributions The Standard Normal Distribution.mp4
|
22.1 MB
|
09. Continuous Distributions The Normal Distribution.mp4
|
21.0 MB
|
01. Fundamentals of Probability Distributions.mp4
|
20.4 MB
|
14. Continuous Distributions The Logistic Distribution.mp4
|
17.0 MB
|
13. Continuous Distributions The Exponential Distribution.mp4
|
16.8 MB
|
05. Discrete Distributions The Bernoulli Distribution.mp4
|
15.9 MB
|
12. Continuous Distributions The Chi-Squared Distribution.mp4
|
11.7 MB
|
04. Discrete Distributions The Uniform Distribution.mp4
|
10.8 MB
|
03. Characteristics of Discrete Distributions.mp4
|
9.9 MB
|
11. Continuous Distributions The Students' T Distribution.mp4
|
9.7 MB
|
15. A Practical Example of Probability Distributions.vtt
|
21.6 KB
|
02. Types of Probability Distributions.vtt
|
10.7 KB
|
08. Characteristics of Continuous Distributions.vtt
|
9.4 KB
|
06. Discrete Distributions The Binomial Distribution.vtt
|
9.0 KB
|
01. Fundamentals of Probability Distributions.vtt
|
8.6 KB
|
07. Discrete Distributions The Poisson Distribution.vtt
|
7.4 KB
|
10. Continuous Distributions The Standard Normal Distribution.vtt
|
5.9 KB
|
14. Continuous Distributions The Logistic Distribution.vtt
|
5.5 KB
|
05. Discrete Distributions The Bernoulli Distribution.vtt
|
5.3 KB
|
09. Continuous Distributions The Normal Distribution.vtt
|
5.2 KB
|
13. Continuous Distributions The Exponential Distribution.vtt
|
4.6 KB
|
11. Continuous Distributions The Students' T Distribution.vtt
|
3.3 KB
|
12. Continuous Distributions The Chi-Squared Distribution.vtt
|
3.1 KB
|
04. Discrete Distributions The Uniform Distribution.vtt
|
3.0 KB
|
03. Characteristics of Discrete Distributions.vtt
|
2.6 KB
|
/assets/
|
03. Probability-Cheat-Sheet.pdf
|
328.0 KB
|
01. Probability-in-Finance-Solutions.pdf
|
188.9 KB
|
01. Probability-in-Finance-Homework.pdf
|
113.3 KB
|
/13. Probability - Probability in Other Fields/
|
01. Probability in Finance.mp4
|
42.3 MB
|
02. Probability in Statistics.mp4
|
33.1 MB
|
03. Probability in Data Science.mp4
|
14.9 MB
|
01. Probability in Finance.vtt
|
10.3 KB
|
02. Probability in Statistics.vtt
|
9.3 KB
|
03. Probability in Data Science.vtt
|
7.3 KB
|
/assets/
|
01. Course-notes-descriptive-statistics.pdf
|
493.8 KB
|
01. Statistics-Glossary.xlsx
|
20.8 KB
|
/external-links/
|
01. Statistics-Flashcards.url
|
0.1 KB
|
/14. Part 3 Statistics/
|
01. Population and Sample.mp4
|
36.8 MB
|
01. Population and Sample.vtt
|
6.0 KB
|
/assets/
|
01. Course-notes-descriptive-statistics.pdf
|
493.8 KB
|
04. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
|
296.1 KB
|
08. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
|
296.1 KB
|
04. 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx
|
42.1 KB
|
10. 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx
|
41.4 KB
|
13. 2.8.Skewness-lesson.xlsx
|
35.5 KB
|
03. 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx
|
31.5 KB
|
20. 2.11.Covariance-exercise-solution.xlsx
|
30.2 KB
|
22. 2.12.Correlation-exercise-solution.xlsx
|
30.2 KB
|
22. 2.12.Correlation-exercise.xlsx
|
30.0 KB
|
09. 2.6.Cross-table-and-scatter-plot.xlsx
|
26.7 KB
|
19. 2.11.Covariance-lesson.xlsx
|
25.5 KB
|
20. 2.11.Covariance-exercise.xlsx
|
20.7 KB
|
01. Glossary.xlsx
|
20.4 KB
|
14. 2.8.Skewness-exercise-solution.xlsx
|
20.3 KB
|
07. 2.5.The-Histogram-lesson.xlsx
|
19.1 KB
|
08. 2.5.The-Histogram-exercise-solution.xlsx
|
17.5 KB
|
10. 2.6.Cross-table-and-scatter-plot-exercise.xlsx
|
16.7 KB
|
08. 2.5.The-Histogram-exercise.xlsx
|
15.9 KB
|
04. 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx
|
15.6 KB
|
06. 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx
|
13.5 KB
|
18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx
|
12.9 KB
|
18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx
|
11.9 KB
|
05. 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx
|
11.7 KB
|
12. 2.7.Mean-median-and-mode-exercise-solution.xlsx
|
11.6 KB
|
16. 2.9.Variance-exercise-solution.xlsx
|
11.3 KB
|
17. 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx
|
11.2 KB
|
12. 2.7.Mean-median-and-mode-exercise.xlsx
|
11.1 KB
|
16. 2.9.Variance-exercise.xlsx
|
11.1 KB
|
11. 2.7.Mean-median-and-mode-lesson.xlsx
|
10.7 KB
|
15. 2.9.Variance-lesson.xlsx
|
10.3 KB
|
14. 2.8.Skewness-exercise.xlsx
|
9.7 KB
|
/15. Statistics - Descriptive Statistics/
|
01. Types of Data.mp4
|
45.3 MB
|
02. Levels of Measurement.mp4
|
33.8 MB
|
03. Categorical Variables - Visualization Techniques.mp4
|
28.8 MB
|
11. Mean, median and mode.mp4
|
25.7 MB
|
15. Variance.mp4
|
24.7 MB
|
17. Standard Deviation and Coefficient of Variation.mp4
|
21.1 MB
|
09. Cross Tables and Scatter Plots.mp4
|
20.7 MB
|
21. Correlation Coefficient.mp4
|
20.3 MB
|
19. Covariance.mp4
|
19.3 MB
|
05. Numerical Variables - Frequency Distribution Table.mp4
|
18.6 MB
|
13. Skewness.mp4
|
14.0 MB
|
07. The Histogram.mp4
|
10.0 MB
|
15. Variance.vtt
|
8.4 KB
|
09. Cross Tables and Scatter Plots.vtt
|
7.1 KB
|
03. Categorical Variables - Visualization Techniques.vtt
|
6.9 KB
|
17. Standard Deviation and Coefficient of Variation.vtt
|
6.5 KB
|
11. Mean, median and mode.vtt
|
6.1 KB
|
01. Types of Data.vtt
|
6.0 KB
|
19. Covariance.vtt
|
5.2 KB
|
21. Correlation Coefficient.vtt
|
5.1 KB
|
02. Levels of Measurement.vtt
|
4.9 KB
|
05. Numerical Variables - Frequency Distribution Table.vtt
|
4.6 KB
|
13. Skewness.vtt
|
3.8 KB
|
07. The Histogram.vtt
|
3.4 KB
|
16. Variance Exercise.html
|
0.5 KB
|
04. Categorical Variables Exercise.html
|
0.1 KB
|
18. Standard Deviation and Coefficient of Variation Exercise.html
|
0.1 KB
|
06. Numerical Variables Exercise.html
|
0.1 KB
|
10. Cross Tables and Scatter Plots Exercise.html
|
0.1 KB
|
14. Skewness Exercise.html
|
0.1 KB
|
20. Covariance Exercise.html
|
0.1 KB
|
08. Histogram Exercise.html
|
0.1 KB
|
12. Mean, Median and Mode Exercise.html
|
0.1 KB
|
22. Correlation Coefficient Exercise.html
|
0.1 KB
|
/assets/
|
01. 2.13.Practical-example.Descriptive-statistics-lesson.xlsx
|
150.0 KB
|
02. 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx
|
149.9 KB
|
02. 2.13.Practical-example.Descriptive-statistics-exercise.xlsx
|
123.2 KB
|
/16. Statistics - Practical Example Descriptive Statistics/
|
01. Practical Example Descriptive Statistics.mp4
|
136.9 MB
|
01. Practical Example Descriptive Statistics.vtt
|
21.5 KB
|
02. Practical Example Descriptive Statistics Exercise.html
|
0.1 KB
|
/assets/
|
02. Course-notes-inferential-statistics.pdf
|
391.5 KB
|
01. Course-notes-inferential-statistics.pdf
|
391.5 KB
|
05. 3.4.Standard-normal-distribution-exercise-solution.xlsx
|
24.6 KB
|
02. 3.2.What-is-a-distribution-lesson.xlsx
|
19.9 KB
|
05. 3.4.Standard-normal-distribution-exercise.xlsx
|
12.3 KB
|
04. 3.4.Standard-normal-distribution-lesson.xlsx
|
10.6 KB
|
/17. Statistics - Inferential Statistics Fundamentals/
|
08. Estimators and Estimates.mp4
|
29.0 MB
|
06. Central Limit Theorem.mp4
|
24.3 MB
|
02. What is a Distribution.mp4
|
18.0 MB
|
07. Standard error.mp4
|
14.2 MB
|
03. The Normal Distribution.mp4
|
13.7 MB
|
04. The Standard Normal Distribution.mp4
|
9.0 MB
|
01. Introduction.mp4
|
3.2 MB
|
02. What is a Distribution.vtt
|
6.0 KB
|
06. Central Limit Theorem.vtt
|
5.7 KB
|
03. The Normal Distribution.vtt
|
5.3 KB
|
04. The Standard Normal Distribution.vtt
|
4.1 KB
|
08. Estimators and Estimates.vtt
|
4.1 KB
|
07. Standard error.vtt
|
2.1 KB
|
01. Introduction.vtt
|
1.7 KB
|
05. The Standard Normal Distribution Exercise.html
|
0.1 KB
|
/assets/
|
02. 3.9.The-z-table.xlsx
|
26.2 KB
|
03. 3.9.The-z-table.xlsx
|
26.2 KB
|
07. 3.11.The-t-table.xlsx
|
16.2 KB
|
06. 3.11.The-t-table.xlsx
|
16.2 KB
|
10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx
|
14.6 KB
|
10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx
|
14.1 KB
|
02. 3.9.Population-variance-known-z-score-lesson.xlsx
|
11.5 KB
|
03. 3.9.Population-variance-known-z-score-exercise-solution.xlsx
|
11.4 KB
|
07. 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx
|
11.4 KB
|
03. 3.9.Population-variance-known-z-score-exercise.xlsx
|
11.1 KB
|
06. 3.11.Population-variance-unknown-t-score-lesson.xlsx
|
11.0 KB
|
07. 3.11.Population-variance-unknown-t-score-exercise.xlsx
|
10.9 KB
|
09. 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx
|
10.7 KB
|
12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx
|
10.4 KB
|
11. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx
|
10.1 KB
|
12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx
|
10.1 KB
|
14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx
|
10.0 KB
|
13. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx
|
9.7 KB
|
14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx
|
9.4 KB
|
/18. Statistics - Inferential Statistics Confidence Intervals/
|
02. Confidence Intervals; Population Variance Known; Z-score.mp4
|
54.7 MB
|
09. Confidence intervals. Two means. Dependent samples.mp4
|
47.2 MB
|
01. What are Confidence Intervals.mp4
|
30.0 MB
|
08. Margin of Error.mp4
|
24.2 MB
|
04. Confidence Interval Clarifications.mp4
|
19.9 MB
|
13. Confidence intervals. Two means. Independent Samples (Part 2).mp4
|
15.3 MB
|
06. Confidence Intervals; Population Variance Unknown; T-score.mp4
|
14.4 MB
|
05. Student's T Distribution.mp4
|
14.3 MB
|
11. Confidence intervals. Two means. Independent Samples (Part 1).mp4
|
12.6 MB
|
15. Confidence intervals. Two means. Independent Samples (Part 3).mp4
|
7.2 MB
|
02. Confidence Intervals; Population Variance Known; Z-score.vtt
|
9.8 KB
|
09. Confidence intervals. Two means. Dependent samples.vtt
|
8.7 KB
|
08. Margin of Error.vtt
|
6.6 KB
|
11. Confidence intervals. Two means. Independent Samples (Part 1).vtt
|
6.4 KB
|
04. Confidence Interval Clarifications.vtt
|
5.7 KB
|
06. Confidence Intervals; Population Variance Unknown; T-score.vtt
|
5.5 KB
|
13. Confidence intervals. Two means. Independent Samples (Part 2).vtt
|
4.8 KB
|
05. Student's T Distribution.vtt
|
4.7 KB
|
01. What are Confidence Intervals.vtt
|
3.3 KB
|
15. Confidence intervals. Two means. Independent Samples (Part 3).vtt
|
2.1 KB
|
03. Confidence Intervals; Population Variance Known; Z-score; Exercise.html
|
0.1 KB
|
14. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html
|
0.1 KB
|
07. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html
|
0.1 KB
|
10. Confidence intervals. Two means. Dependent samples Exercise.html
|
0.1 KB
|
12. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html
|
0.1 KB
|
/assets/
|
02. 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx
|
1.9 MB
|
01. 3.17.Practical-example.Confidence-intervals-lesson.xlsx
|
1.8 MB
|
02. 3.17.Practical-example.Confidence-intervals-exercise.xlsx
|
1.8 MB
|
/19. Statistics - Practical Example Inferential Statistics/
|
01. Practical Example Inferential Statistics.mp4
|
72.4 MB
|
01. Practical Example Inferential Statistics.vtt
|
14.2 KB
|
02. Practical Example Inferential Statistics Exercise.html
|
0.1 KB
|
/assets/
|
07. Online-p-value-calculator.pdf
|
1.2 MB
|
03. Course-notes-hypothesis-testing.pdf
|
672.2 KB
|
01. Course-notes-hypothesis-testing.pdf
|
672.2 KB
|
08. 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx
|
14.9 KB
|
11. 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx
|
14.7 KB
|
11. 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx
|
13.1 KB
|
09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx
|
12.9 KB
|
15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx
|
11.7 KB
|
09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx
|
11.6 KB
|
13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx
|
11.5 KB
|
06. 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx
|
11.5 KB
|
06. 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx
|
11.3 KB
|
05. 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx
|
11.2 KB
|
13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx
|
11.0 KB
|
15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx
|
10.8 KB
|
10. 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx
|
10.0 KB
|
12. 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx
|
9.9 KB
|
14. 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx
|
9.5 KB
|
/20. Statistics - Hypothesis Testing/
|
03. Rejection Region and Significance Level.mp4
|
40.6 MB
|
05. Test for the Mean. Population Variance Known.mp4
|
38.7 MB
|
07. p-value.mp4
|
35.4 MB
|
10. Test for the Mean. Dependent Samples.mp4
|
34.4 MB
|
01. Null vs Alternative Hypothesis.mp4
|
33.5 MB
|
14. Test for the mean. Independent Samples (Part 2).mp4
|
25.6 MB
|
08. Test for the Mean. Population Variance Unknown.mp4
|
20.7 MB
|
12. Test for the mean. Independent Samples (Part 1).mp4
|
16.2 MB
|
04. Type I Error and Type II Error.mp4
|
16.0 MB
|
03. Rejection Region and Significance Level.vtt
|
8.8 KB
|
05. Test for the Mean. Population Variance Known.vtt
|
8.3 KB
|
01. Null vs Alternative Hypothesis.vtt
|
7.3 KB
|
10. Test for the Mean. Dependent Samples.vtt
|
6.9 KB
|
08. Test for the Mean. Population Variance Unknown.vtt
|
6.1 KB
|
04. Type I Error and Type II Error.vtt
|
5.6 KB
|
12. Test for the mean. Independent Samples (Part 1).vtt
|
5.6 KB
|
14. Test for the mean. Independent Samples (Part 2).vtt
|
5.5 KB
|
07. p-value.vtt
|
5.4 KB
|
02. Further Reading on Null and Alternative Hypothesis.html
|
2.3 KB
|
13. Test for the mean. Independent Samples (Part 1). Exercise.html
|
0.1 KB
|
09. Test for the Mean. Population Variance Unknown Exercise.html
|
0.1 KB
|
06. Test for the Mean. Population Variance Known Exercise.html
|
0.1 KB
|
15. Test for the mean. Independent Samples (Part 2). Exercise.html
|
0.1 KB
|
11. Test for the Mean. Dependent Samples Exercise.html
|
0.1 KB
|
/assets/
|
01. 4.10.Hypothesis-testing-section-practical-example.xlsx
|
53.1 KB
|
02. 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx
|
45.3 KB
|
02. 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx
|
44.7 KB
|
/21. Statistics - Practical Example Hypothesis Testing/
|
01. Practical Example Hypothesis Testing.mp4
|
48.1 MB
|
01. Practical Example Hypothesis Testing.vtt
|
8.8 KB
|
02. Practical Example Hypothesis Testing Exercise.html
|
0.1 KB
|
/assets/
|
01. Introduction-to-Python-Course-Notes.pdf
|
2.3 MB
|
/external-links/
|
01. Intro-to-Python-Flashcards.url
|
0.0 KB
|
/22. Part 4 Introduction to Python/
|
06. Prerequisites for Coding in the Jupyter Notebooks.mp4
|
19.9 MB
|
04. Installing Python and Jupyter.mp4
|
19.7 MB
|
01. Introduction to Programming.mp4
|
15.6 MB
|
02. Why Python.mp4
|
12.8 MB
|
03. Why Jupyter.mp4
|
8.4 MB
|
05. Understanding Jupyter's Interface - the Notebook Dashboard.mp4
|
6.4 MB
|
06. Prerequisites for Coding in the Jupyter Notebooks.vtt
|
8.1 KB
|
01. Introduction to Programming.vtt
|
7.5 KB
|
02. Why Python.vtt
|
7.3 KB
|
04. Installing Python and Jupyter.vtt
|
5.0 KB
|
03. Why Jupyter.vtt
|
4.3 KB
|
05. Understanding Jupyter's Interface - the Notebook Dashboard.vtt
|
3.8 KB
|
/assets/
|
01. Introduction-to-Python-Course-Notes.pdf
|
2.3 MB
|
03. Strings-Lecture-Py3.ipynb
|
7.7 KB
|
03. Strings-Solution-Py3.ipynb
|
5.6 KB
|
01. Variables-Solution-Py3.ipynb
|
3.9 KB
|
01. Variables-Lecture-Py3.ipynb
|
3.7 KB
|
02. Numbers-and-Boolean-Values-Lecture-Py3.ipynb
|
3.4 KB
|
02. Numbers-and-Boolean-Values-Solution-Py3.ipynb
|
3.3 KB
|
03. Strings-Exercise-Py3.ipynb
|
2.7 KB
|
02. Numbers-and-Boolean-Values-Exercise-Py3.ipynb
|
2.3 KB
|
01. Variables-Exercise-Py3.ipynb
|
2.3 KB
|
/23. Python - Variables and Data Types/
|
03. Python Strings.mp4
|
20.7 MB
|
01. Variables.mp4
|
9.4 MB
|
02. Numbers and Boolean Values in Python.mp4
|
6.9 MB
|
03. Python Strings.vtt
|
7.8 KB
|
01. Variables.vtt
|
4.9 KB
|
02. Numbers and Boolean Values in Python.vtt
|
3.8 KB
|
/assets/
|
01. Arithmetic-Operators-Solution-Py3.ipynb
|
4.3 KB
|
01. Arithmetic-Operators-Lecture-Py3.ipynb
|
3.6 KB
|
03. Reassign-Values-Lecture-Py3.ipynb
|
3.2 KB
|
01. Arithmetic-Operators-Exercise-Py3.ipynb
|
2.7 KB
|
06. Indexing-Elements-Solution-Py3.ipynb
|
2.2 KB
|
03. Reassign-Values-Solution-Py3.ipynb
|
2.2 KB
|
03. Reassign-Values-Exercise-Py3.ipynb
|
1.7 KB
|
05. Line-Continuation-Solution-Py3.ipynb
|
1.5 KB
|
07. Structure-Your-Code-with-Indentation-Solution-Py3.ipynb
|
1.5 KB
|
02. The-Double-Equality-Sign-Lecture-Py3.ipynb
|
1.5 KB
|
06. Indexing-Elements-Exercise-Py3.ipynb
|
1.4 KB
|
06. Indexing-Elements-Lecture-Py3.ipynb
|
1.3 KB
|
02. The-Double-Equality-Sign-Solution-Py3.ipynb
|
1.2 KB
|
05. Line-Continuation-Exercise-Py3.ipynb
|
1.2 KB
|
04. Add-Comments-Lecture-Py3.ipynb
|
1.1 KB
|
07. Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb
|
1.0 KB
|
07. Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb
|
1.0 KB
|
02. The-Double-Equality-Sign-Exercise-Py3.ipynb
|
0.8 KB
|
05. Line-Continuation-Lecture-Py3.ipynb
|
0.8 KB
|
/24. Python - Basic Python Syntax/
|
01. Using Arithmetic Operators in Python.mp4
|
9.0 MB
|
07. Structuring with Indentation.mp4
|
2.9 MB
|
02. The Double Equality Sign.mp4
|
2.8 MB
|
04. Add Comments.mp4
|
2.5 MB
|
06. Indexing Elements.mp4
|
2.5 MB
|
03. How to Reassign Values.mp4
|
2.0 MB
|
05. Understanding Line Continuation.mp4
|
1.3 MB
|
01. Using Arithmetic Operators in Python.vtt
|
4.5 KB
|
07. Structuring with Indentation.vtt
|
2.4 KB
|
04. Add Comments.vtt
|
2.0 KB
|
02. The Double Equality Sign.vtt
|
1.9 KB
|
06. Indexing Elements.vtt
|
1.7 KB
|
03. How to Reassign Values.vtt
|
1.4 KB
|
05. Understanding Line Continuation.vtt
|
1.2 KB
|
/assets/
|
02. Logical-and-Identity-Operators-Lecture-Py3.ipynb
|
6.0 KB
|
02. Logical-and-Identity-Operators-Solution-Py3.ipynb
|
3.5 KB
|
01. Comparison-Operators-Lecture-Py3.ipynb
|
2.6 KB
|
01. Comparison-Operators-Solution-Py3.ipynb
|
2.5 KB
|
01. Comparison-Operators-Exercise-Py3.ipynb
|
1.6 KB
|
/25. Python - Other Python Operators/
|
02. Logical and Identity Operators.mp4
|
19.9 MB
|
01. Comparison Operators.mp4
|
4.4 MB
|
02. Logical and Identity Operators.vtt
|
6.1 KB
|
01. Comparison Operators.vtt
|
2.6 KB
|
/assets/
|
03. Else-If-for-Brief-Elif-Lecture-Py3.ipynb
|
3.3 KB
|
03. Else-If-for-Brief-Elif-Solution-Py3.ipynb
|
2.5 KB
|
01. Introduction-to-the-If-Statement-Solution-Py3.ipynb
|
2.2 KB
|
02. Add-an-Else-Statement-Lecture-Py3.ipynb
|
1.8 KB
|
03. Else-If-for-Brief-Elif-Exercise-Py3.ipynb
|
1.8 KB
|
01. Introduction-to-the-If-Statement-Exercise-Py3.ipynb
|
1.6 KB
|
02. Add-an-Else-Statement-Solution-Py3.ipynb
|
1.4 KB
|
01. Introduction-to-the-If-Statement-Lecture-Py3.ipynb
|
1.2 KB
|
02. Add-an-Else-Statement-Exercise-Py3.ipynb
|
1.0 KB
|
04. A-Note-on-Boolean-Values-Lecture-Py3.ipynb
|
0.8 KB
|
/26. Python - Conditional Statements/
|
03. The ELIF Statement.mp4
|
14.9 MB
|
01. The IF Statement.mp4
|
7.0 MB
|
02. The ELSE Statement.mp4
|
6.3 MB
|
04. A Note on Boolean Values.mp4
|
4.4 MB
|
03. The ELIF Statement.vtt
|
7.0 KB
|
01. The IF Statement.vtt
|
3.8 KB
|
02. The ELSE Statement.vtt
|
3.3 KB
|
04. A Note on Boolean Values.vtt
|
3.2 KB
|
/assets/
|
07. Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb
|
5.7 KB
|
07. Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb
|
4.6 KB
|
07. Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb
|
3.7 KB
|
03. Another-Way-to-Define-a-Function-Lecture-Py3.ipynb
|
3.4 KB
|
03. Another-Way-to-Define-a-Function-Solution-Py3.ipynb
|
2.0 KB
|
02. Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb
|
1.8 KB
|
06. Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb
|
1.8 KB
|
05. Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb
|
1.7 KB
|
04. 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb
|
1.6 KB
|
02. Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb
|
1.6 KB
|
05. Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb
|
1.3 KB
|
03. Another-Way-to-Define-a-Function-Exercise-Py3.ipynb
|
1.3 KB
|
02. Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb
|
1.2 KB
|
05. Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb
|
1.1 KB
|
04. 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb
|
1.1 KB
|
04. 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb
|
1.0 KB
|
01. Defining-a-Function-in-Python-Lecture-Py3.ipynb
|
0.9 KB
|
/27. Python - Python Functions/
|
07. Built-in Functions in Python.mp4
|
10.7 MB
|
02. How to Create a Function with a Parameter.mp4
|
10.5 MB
|
03. Defining a Function in Python - Part II.mp4
|
6.8 MB
|
05. Conditional Statements and Functions.mp4
|
6.3 MB
|
04. How to Use a Function within a Function.mp4
|
3.4 MB
|
01. Defining a Function in Python.mp4
|
3.4 MB
|
06. Functions Containing a Few Arguments.mp4
|
2.9 MB
|
02. How to Create a Function with a Parameter.vtt
|
4.6 KB
|
07. Built-in Functions in Python.vtt
|
4.4 KB
|
05. Conditional Statements and Functions.vtt
|
3.7 KB
|
03. Defining a Function in Python - Part II.vtt
|
3.1 KB
|
01. Defining a Function in Python.vtt
|
2.7 KB
|
04. How to Use a Function within a Function.vtt
|
2.1 KB
|
06. Functions Containing a Few Arguments.vtt
|
1.5 KB
|
/assets/
|
05. Dictionaries-Solution-Py3.ipynb
|
6.3 KB
|
03. List-Slicing-Lecture-Py3.ipynb
|
5.1 KB
|
04. Tuples-Solution-Py3.ipynb
|
4.7 KB
|
02. Help-Yourself-with-Methods-Lecture-Py3.ipynb
|
4.5 KB
|
05. Dictionaries-Lecture-Py3.ipynb
|
4.5 KB
|
03. List-Slicing-Solution-Py3.ipynb
|
4.4 KB
|
01. Lists-Solution-Py3.ipynb
|
3.3 KB
|
05. Dictionaries-Exercise-Py3.ipynb
|
3.0 KB
|
04. Tuples-Lecture-Py3.ipynb
|
3.0 KB
|
02. Help-Yourself-with-Methods-Solution-Py3.ipynb
|
2.9 KB
|
03. List-Slicing-Exercise-Py3.ipynb
|
2.9 KB
|
01. Lists-Lecture-Py3.ipynb
|
2.8 KB
|
01. Lists-Exercise-Py3.ipynb
|
2.2 KB
|
04. Tuples-Exercise-Py3.ipynb
|
2.1 KB
|
02. Help-Yourself-with-Methods-Exercise-Py3.ipynb
|
2.0 KB
|
/28. Python - Sequences/
|
05. Dictionaries.mp4
|
34.0 MB
|
02. Using Methods.mp4
|
31.8 MB
|
01. Lists.mp4
|
24.2 MB
|
03. List Slicing.mp4
|
20.1 MB
|
04. Tuples.mp4
|
19.1 MB
|
01. Lists.vtt
|
10.6 KB
|
05. Dictionaries.vtt
|
9.1 KB
|
02. Using Methods.vtt
|
8.9 KB
|
04. Tuples.vtt
|
7.7 KB
|
03. List Slicing.vtt
|
5.7 KB
|
/assets/
|
04. Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb
|
3.0 KB
|
06. Iterating-over-Dictionaries-Solution-Py3.ipynb
|
2.9 KB
|
03. Create-Lists-with-the-range-Function-Solution-Py3.ipynb
|
2.3 KB
|
06. Iterating-over-Dictionaries-Exercise-Py3.ipynb
|
2.2 KB
|
04. Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb
|
2.1 KB
|
04. Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb
|
2.0 KB
|
05. All-In-Solution-Py3.ipynb
|
1.9 KB
|
01. For-Loops-Solution-Py3.ipynb
|
1.8 KB
|
02. While-Loops-and-Incrementing-Solution-Py3.ipynb
|
1.8 KB
|
05. All-In-Lecture-Py3.ipynb
|
1.7 KB
|
03. Create-Lists-with-the-range-Function-Exercise-Py3.ipynb
|
1.5 KB
|
03. Create-Lists-with-the-range-Function-Lecture-Py3.ipynb
|
1.4 KB
|
05. All-In-Exercise-Py3.ipynb
|
1.3 KB
|
01. For-Loops-Exercise-Py3.ipynb
|
1.3 KB
|
01. For-Loops-Lecture-Py3.ipynb
|
1.3 KB
|
02. While-Loops-and-Incrementing-Exercise-Py3.ipynb
|
1.1 KB
|
02. While-Loops-and-Incrementing-Lecture-Py3.ipynb
|
1.1 KB
|
06. Iterating-over-Dictionaries-Lecture-Py3.ipynb
|
1.1 KB
|
/29. Python - Iterations/
|
02. While Loops and Incrementing.mp4
|
21.2 MB
|
06. How to Iterate over Dictionaries.mp4
|
19.3 MB
|
04. Conditional Statements and Loops.mp4
|
18.2 MB
|
03. Lists with the range() Function.mp4
|
16.8 MB
|
01. For Loops.mp4
|
13.6 MB
|
05. Conditional Statements, Functions, and Loops.mp4
|
4.5 MB
|
03. Lists with the range() Function.vtt
|
8.8 KB
|
04. Conditional Statements and Loops.vtt
|
8.2 KB
|
06. How to Iterate over Dictionaries.vtt
|
8.0 KB
|
01. For Loops.vtt
|
6.9 KB
|
02. While Loops and Incrementing.vtt
|
6.2 KB
|
05. Conditional Statements, Functions, and Loops.vtt
|
2.5 KB
|
/30. Python - Advanced Python Tools/
|
04. Importing Modules in Python.mp4
|
10.4 MB
|
01. Object Oriented Programming.mp4
|
9.1 MB
|
03. What is the Standard Library.mp4
|
5.3 MB
|
02. Modules and Packages.mp4
|
2.2 MB
|
01. Object Oriented Programming.vtt
|
7.0 KB
|
04. Importing Modules in Python.vtt
|
5.0 KB
|
03. What is the Standard Library.vtt
|
4.0 KB
|
02. Modules and Packages.vtt
|
1.5 KB
|
/assets/
|
01. Course-notes-regression-analysis.pdf
|
319.7 KB
|
/external-links/
|
01. Advanced-Statistics-Flashcards.url
|
0.0 KB
|
/31. Part 5 Advanced Statistical Methods in Python/
|
01. Introduction to Regression Analysis.mp4
|
3.8 MB
|
01. Introduction to Regression Analysis.vtt
|
2.4 KB
|
/assets/
|
01. Course-notes-regression-analysis.pdf
|
319.7 KB
|
05. Simple-linear-regression-with-comments.ipynb
|
4.2 KB
|
05. Simple-linear-regression.ipynb
|
3.9 KB
|
06. Simple-Linear-Regression-Exercise-Solution.ipynb
|
3.7 KB
|
06. Simple-Linear-Regression-Exercise.ipynb
|
2.8 KB
|
06. real-estate-price-size.csv
|
1.9 KB
|
05. 1.01.Simple-linear-regression.csv
|
0.9 KB
|
/32. Advanced Statistical Methods - Linear Regression with StatsModels/
|
05. First Regression in Python.mp4
|
31.0 MB
|
08. How to Interpret the Regression Table.mp4
|
30.1 MB
|
04. Python Packages Installation.mp4
|
24.8 MB
|
10. What is the OLS.mp4
|
23.6 MB
|
01. The Linear Regression Model.mp4
|
14.1 MB
|
11. R-Squared.mp4
|
11.7 MB
|
09. Decomposition of Variability.mp4
|
9.2 MB
|
07. Using Seaborn for Graphs.mp4
|
7.7 MB
|
02. Correlation vs Regression.mp4
|
4.0 MB
|
03. Geometrical Representation of the Linear Regression Model.mp4
|
2.4 MB
|
05. First Regression in Python.vtt
|
8.4 KB
|
01. The Linear Regression Model.vtt
|
8.3 KB
|
11. R-Squared.vtt
|
7.0 KB
|
08. How to Interpret the Regression Table.vtt
|
6.5 KB
|
04. Python Packages Installation.vtt
|
5.7 KB
|
09. Decomposition of Variability.vtt
|
4.6 KB
|
10. What is the OLS.vtt
|
3.9 KB
|
02. Correlation vs Regression.vtt
|
2.2 KB
|
03. Geometrical Representation of the Linear Regression Model.vtt
|
1.8 KB
|
07. Using Seaborn for Graphs.vtt
|
1.6 KB
|
06. First Regression in Python Exercise.html
|
1.4 KB
|
/assets/
|
12. Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb
|
18.4 KB
|
03. Multiple-Linear-Regression-Exercise-Solution.ipynb
|
13.7 KB
|
13. Making-predictions-with-comments.ipynb
|
9.6 KB
|
11. Dummy-variables-with-comments.ipynb
|
7.3 KB
|
13. Making-predictions.ipynb
|
5.9 KB
|
11. Dummy-Variables.ipynb
|
4.7 KB
|
12. real-estate-price-size-year-view.csv
|
3.5 KB
|
12. Multiple-Linear-Regression-with-Dummies-Exercise.ipynb
|
3.1 KB
|
02. Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb
|
2.9 KB
|
03. Multiple-Linear-Regression-Exercise.ipynb
|
2.5 KB
|
03. real-estate-price-size-year.csv
|
2.4 KB
|
02. Multiple-linear-regression-and-Adjusted-R-squared.ipynb
|
2.2 KB
|
11. 1.03.Dummies.csv
|
1.2 KB
|
02. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
/33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/
|
02. Adjusted R-Squared.mp4
|
35.9 MB
|
08. A3 Normality and Homoscedasticity.mp4
|
28.7 MB
|
11. Dealing with Categorical Data - Dummy Variables.mp4
|
23.7 MB
|
13. Making Predictions with the Linear Regression.mp4
|
17.1 MB
|
07. A2 No Endogeneity.mp4
|
9.7 MB
|
09. A4 No Autocorrelation.mp4
|
8.3 MB
|
10. A5 No Multicollinearity.mp4
|
8.0 MB
|
04. Test for Significance of the Model (F-Test).mp4
|
7.5 MB
|
01. Multiple Linear Regression.mp4
|
6.0 MB
|
05. OLS Assumptions.mp4
|
5.5 MB
|
06. A1 Linearity.mp4
|
3.7 MB
|
11. Dealing with Categorical Data - Dummy Variables.vtt
|
9.8 KB
|
02. Adjusted R-Squared.vtt
|
7.7 KB
|
08. A3 Normality and Homoscedasticity.vtt
|
7.2 KB
|
07. A2 No Endogeneity.vtt
|
5.7 KB
|
09. A4 No Autocorrelation.vtt
|
5.1 KB
|
10. A5 No Multicollinearity.vtt
|
4.7 KB
|
13. Making Predictions with the Linear Regression.vtt
|
4.5 KB
|
01. Multiple Linear Regression.vtt
|
3.5 KB
|
05. OLS Assumptions.vtt
|
3.1 KB
|
06. A1 Linearity.vtt
|
2.5 KB
|
04. Test for Significance of the Model (F-Test).vtt
|
2.5 KB
|
03. Multiple Linear Regression Exercise.html
|
0.1 KB
|
12. Dealing with Categorical Data - Dummy Variables.html
|
0.1 KB
|
/assets/
|
16. sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb
|
30.5 KB
|
04. sklearn-Simple-Linear-Regression-with-comments.ipynb
|
29.0 KB
|
06. Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb
|
27.2 KB
|
04. sklearn-Simple-Linear-Regression.ipynb
|
26.7 KB
|
16. sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb
|
22.6 KB
|
15. SKLEAR-1.IPY
|
17.2 KB
|
12. sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb
|
17.0 KB
|
17. sklearn-Feature-Scaling-Exercise-Solution.ipynb
|
16.7 KB
|
13. sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb
|
15.8 KB
|
15. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb
|
15.3 KB
|
12. sklearn-Multiple-Linear-Regression-Summary-Table.ipynb
|
14.0 KB
|
10. sklearn-Feature-Selection-with-F-regression-with-comments.ipynb
|
13.3 KB
|
14. SKLEAR-1.IPY
|
13.2 KB
|
11. sklearn-How-to-properly-include-p-values.ipynb
|
13.0 KB
|
14. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb
|
12.0 KB
|
10. sklearn-Feature-Selection-with-F-regression.ipynb
|
10.7 KB
|
08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb
|
10.7 KB
|
09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb
|
10.6 KB
|
09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb
|
10.1 KB
|
08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb
|
9.3 KB
|
19. sklearn-Train-Test-Split-with-comments.ipynb
|
9.3 KB
|
07. sklearn-Multiple-Linear-Regression-with-comments.ipynb
|
8.9 KB
|
07. sklearn-Multiple-Linear-Regression.ipynb
|
8.0 KB
|
19. sklearn-Train-Test-Split.ipynb
|
7.4 KB
|
17. sklearn-Feature-Scaling-Exercise.ipynb
|
6.2 KB
|
03. sklearn-Simple-Linear-Regression-with-comments.ipynb
|
6.2 KB
|
13. sklearn-Multiple-Linear-Regression-Exercise.ipynb
|
5.8 KB
|
03. sklearn-Simple-Linear-Regression.ipynb
|
5.0 KB
|
06. Simple-Linear-Regression-with-sklearn-Exercise.ipynb
|
4.2 KB
|
17. real-estate-price-size-year.csv
|
2.4 KB
|
13. real-estate-price-size-year.csv
|
2.4 KB
|
06. real-estate-price-size.csv
|
1.9 KB
|
09. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
07. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
14. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
16. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
15. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
08. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
12. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
10. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
11. 1.02.Multiple-linear-regression.csv
|
1.1 KB
|
04. 1.01.Simple-linear-regression.csv
|
0.9 KB
|
03. 1.01.Simple-linear-regression.csv
|
0.9 KB
|
/34. Advanced Statistical Methods - Linear Regression with sklearn/
|
19. Train - Test Split Explained.mp4
|
37.3 MB
|
03. Simple Linear Regression with sklearn.mp4
|
28.8 MB
|
15. Feature Selection through Standardization of Weights.mp4
|
25.7 MB
|
04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4
|
23.4 MB
|
10. Feature Selection (F-regression).mp4
|
21.5 MB
|
16. Predicting with the Standardized Coefficients.mp4
|
21.4 MB
|
14. Feature Scaling (Standardization).mp4
|
21.4 MB
|
08. Calculating the Adjusted R-Squared in sklearn.mp4
|
17.7 MB
|
01. What is sklearn and How is it Different from Other Packages.mp4
|
8.9 MB
|
07. Multiple Linear Regression with sklearn.mp4
|
8.7 MB
|
12. Creating a Summary Table with P-values.mp4
|
6.8 MB
|
18. Underfitting and Overfitting.mp4
|
6.1 MB
|
02. How are we Going to Approach this Section.mp4
|
5.6 MB
|
19. Train - Test Split Explained.vtt
|
9.9 KB
|
14. Feature Scaling (Standardization).vtt
|
9.0 KB
|
15. Feature Selection through Standardization of Weights.vtt
|
7.8 KB
|
03. Simple Linear Regression with sklearn.vtt
|
7.8 KB
|
10. Feature Selection (F-regression).vtt
|
7.1 KB
|
04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt
|
6.9 KB
|
08. Calculating the Adjusted R-Squared in sklearn.vtt
|
6.8 KB
|
16. Predicting with the Standardized Coefficients.vtt
|
5.7 KB
|
07. Multiple Linear Regression with sklearn.vtt
|
4.4 KB
|
18. Underfitting and Overfitting.vtt
|
3.8 KB
|
01. What is sklearn and How is it Different from Other Packages.vtt
|
3.7 KB
|
12. Creating a Summary Table with P-values.vtt
|
3.1 KB
|
02. How are we Going to Approach this Section.vtt
|
3.1 KB
|
05. A Note on Normalization.html
|
0.7 KB
|
11. A Note on Calculation of P-values with sklearn.html
|
0.4 KB
|
06. Simple Linear Regression with sklearn - Exercise.html
|
0.1 KB
|
09. Calculating the Adjusted R-Squared in sklearn - Exercise.html
|
0.1 KB
|
13. Multiple Linear Regression - Exercise.html
|
0.1 KB
|
17. Feature Scaling (Standardization) - Exercise.html
|
0.1 KB
|
/assets/
|
08. sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb
|
728.1 KB
|
08. sklearn-Linear-Regression-Practical-Example-Part-5.ipynb
|
715.1 KB
|
06. sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb
|
417.4 KB
|
06. sklearn-Linear-Regression-Practical-Example-Part-4.ipynb
|
406.8 KB
|
05. sklearn-Dummies-and-VIF-Exercise-Solution.ipynb
|
379.1 KB
|
04. sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb
|
359.9 KB
|
05. sklearn-Dummies-and-VIF-Exercise.ipynb
|
352.9 KB
|
04. sklearn-Linear-Regression-Practical-Example-Part-3.ipynb
|
351.8 KB
|
02. sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb
|
343.7 KB
|
02. sklearn-Linear-Regression-Practical-Example-Part-2.ipynb
|
336.6 KB
|
06. 1.04.Real-life-example.csv
|
225.1 KB
|
02. 1.04.Real-life-example.csv
|
225.1 KB
|
01. 1.04.Real-life-example.csv
|
225.1 KB
|
05. 1.04.Real-life-example.csv
|
225.1 KB
|
08. 1.04.Real-life-example.csv
|
225.1 KB
|
01. sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb
|
175.5 KB
|
01. sklearn-Linear-Regression-Practical-Example-Part-1.ipynb
|
170.9 KB
|
/external-links/
|
04. sklearn-Linear-Regression-Practical-Example-Part-3-.url
|
0.1 KB
|
/35. Advanced Statistical Methods - Practical Example Linear Regression/
|
01. Practical Example Linear Regression (Part 1).mp4
|
88.9 MB
|
08. Practical Example Linear Regression (Part 5).mp4
|
52.9 MB
|
06. Practical Example Linear Regression (Part 4).mp4
|
41.3 MB
|
02. Practical Example Linear Regression (Part 2).mp4
|
33.4 MB
|
04. Practical Example Linear Regression (Part 3).mp4
|
17.5 MB
|
01. Practical Example Linear Regression (Part 1).vtt
|
15.2 KB
|
06. Practical Example Linear Regression (Part 4).vtt
|
12.1 KB
|
08. Practical Example Linear Regression (Part 5).vtt
|
11.3 KB
|
02. Practical Example Linear Regression (Part 2).vtt
|
8.5 KB
|
04. Practical Example Linear Regression (Part 3).vtt
|
4.6 KB
|
03. A Note on Multicollinearity.html
|
0.8 KB
|
07. Dummy Variables - Exercise.html
|
0.7 KB
|
09. Linear Regression - Exercise.html
|
0.5 KB
|
05. Dummies and Variance Inflation Factor - Exercise.html
|
0.1 KB
|
/assets/
|
01. Course-Notes-Logistic-Regression.pdf
|
343.2 KB
|
02. Course-Notes-Logistic-Regression.pdf
|
343.2 KB
|
16. Testing-the-Model-Solution.ipynb
|
113.8 KB
|
13. Calculating-the-Accuracy-of-the-Model-Solution.ipynb
|
83.2 KB
|
11. Bank-data.csv
|
20.0 KB
|
13. Bank-data.csv
|
20.0 KB
|
16. Bank-data.csv
|
20.0 KB
|
08. Bank-data.csv
|
20.0 KB
|
12. Accuracy-with-comments.ipynb
|
12.0 KB
|
16. Bank-data-testing.csv
|
8.5 KB
|
15. Testing-the-model-with-comments.ipynb
|
7.7 KB
|
16. Testing-the-Model-Exercise.ipynb
|
7.0 KB
|
05. Example-bank-data.csv
|
6.4 KB
|
15. Testing-the-model.ipynb
|
5.9 KB
|
13. Calculating-the-Accuracy-of-the-Model-Exercise.ipynb
|
5.5 KB
|
02. Admittance-with-comments.ipynb
|
5.4 KB
|
08. Understanding-Logistic-Regression-Tables-Solution.ipynb
|
4.9 KB
|
11. Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb
|
4.6 KB
|
05. Building-a-Logistic-Regression-Solution.ipynb
|
4.6 KB
|
04. Admittance-regression-tables-fixed-error.ipynb
|
4.2 KB
|
12. Accuracy.ipynb
|
3.7 KB
|
02. Admittance.ipynb
|
3.6 KB
|
08. Understanding-Logistic-Regression-Tables-Exercise.ipynb
|
3.2 KB
|
05. Building-a-Logistic-Regression-Exercise.ipynb
|
3.0 KB
|
10. 2.02.Binary-predictors.csv
|
2.6 KB
|
11. Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb
|
2.6 KB
|
04. Admittance-regression-summary-error.ipynb
|
2.5 KB
|
10. Binary-predictors.ipynb
|
2.5 KB
|
04. Admittance-regression.ipynb
|
2.1 KB
|
02. 2.01.Admittance.csv
|
1.6 KB
|
15. 2.03.Test-dataset.csv
|
0.3 KB
|
/36. Advanced Statistical Methods - Logistic Regression/
|
10. Binary Predictors in a Logistic Regression.mp4
|
26.1 MB
|
03. Logistic vs Logit Function.mp4
|
24.9 MB
|
02. A Simple Example in Python.mp4
|
22.9 MB
|
15. Testing the Model.mp4
|
22.6 MB
|
12. Calculating the Accuracy of the Model.mp4
|
21.2 MB
|
06. An Invaluable Coding Tip.mp4
|
19.7 MB
|
07. Understanding Logistic Regression Tables.mp4
|
15.3 MB
|
09. What do the Odds Actually Mean.mp4
|
11.9 MB
|
04. Building a Logistic Regression.mp4
|
9.0 MB
|
14. Underfitting and Overfitting.mp4
|
7.8 MB
|
01. Introduction to Logistic Regression.mp4
|
6.2 MB
|
15. Testing the Model.vtt
|
6.7 KB
|
02. A Simple Example in Python.vtt
|
6.0 KB
|
07. Understanding Logistic Regression Tables.vtt
|
5.7 KB
|
10. Binary Predictors in a Logistic Regression.vtt
|
5.4 KB
|
14. Underfitting and Overfitting.vtt
|
5.3 KB
|
03. Logistic vs Logit Function.vtt
|
5.2 KB
|
09. What do the Odds Actually Mean.vtt
|
4.5 KB
|
12. Calculating the Accuracy of the Model.vtt
|
4.4 KB
|
04. Building a Logistic Regression.vtt
|
3.6 KB
|
06. An Invaluable Coding Tip.vtt
|
3.2 KB
|
01. Introduction to Logistic Regression.vtt
|
1.9 KB
|
05. Building a Logistic Regression - Exercise.html
|
0.1 KB
|
11. Binary Predictors in a Logistic Regression - Exercise.html
|
0.1 KB
|
13. Calculating the Accuracy of the Model.html
|
0.1 KB
|
08. Understanding Logistic Regression Tables - Exercise.html
|
0.1 KB
|
16. Testing the Model - Exercise.html
|
0.1 KB
|
/assets/
|
02. Course-Notes-Cluster-Analysis.pdf
|
213.7 KB
|
01. Course-Notes-Cluster-Analysis.pdf
|
213.7 KB
|
/37. Advanced Statistical Methods - Cluster Analysis/
|
02. Some Examples of Clusters.mp4
|
37.6 MB
|
01. Introduction to Cluster Analysis.mp4
|
15.2 MB
|
03. Difference between Classification and Clustering.mp4
|
10.1 MB
|
04. Math Prerequisites.mp4
|
5.5 MB
|
02. Some Examples of Clusters.vtt
|
6.4 KB
|
01. Introduction to Cluster Analysis.vtt
|
5.1 KB
|
04. Math Prerequisites.vtt
|
4.5 KB
|
03. Difference between Classification and Clustering.vtt
|
3.7 KB
|
/assets/
|
15. Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb
|
15.7 KB
|
15. Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb
|
11.0 KB
|
05. Categorical.csv
|
10.6 KB
|
07. How-to-Choose-the-Number-of-Clusters-Solution.ipynb
|
8.7 KB
|
03. Countries-exercise.csv
|
8.5 KB
|
07. Countries-exercise.csv
|
8.5 KB
|
06. Selecting-the-number-of-clusters-with-comments.ipynb
|
7.7 KB
|
14. Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb
|
7.5 KB
|
12. Market-segmentation-example-Part2-with-comments.ipynb
|
7.0 KB
|
11. Market-segmentation-example-with-comments.ipynb
|
6.0 KB
|
02. Country-clusters-with-comments.ipynb
|
5.9 KB
|
04. Categorical-data-with-comments.ipynb
|
5.8 KB
|
07. How-to-Choose-the-Number-of-Clusters-Exercise.ipynb
|
5.7 KB
|
05. Clustering-Categorical-Data-Solution.ipynb
|
5.0 KB
|
12. Market-segmentation-example-Part2.ipynb
|
4.8 KB
|
03. A-Simple-Example-of-Clustering-Solution.ipynb
|
4.8 KB
|
06. Selecting-the-number-of-clusters.ipynb
|
4.6 KB
|
14. Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb
|
4.6 KB
|
11. Market-segmentation-example.ipynb
|
3.9 KB
|
05. Clustering-Categorical-Data-Exercise.ipynb
|
3.9 KB
|
15. iris-with-answers.csv
|
3.7 KB
|
03. A-Simple-Example-of-Clustering-Exercise.ipynb
|
3.7 KB
|
04. Categorical-data.ipynb
|
3.4 KB
|
02. Country-clusters.ipynb
|
3.4 KB
|
15. iris-dataset.csv
|
2.5 KB
|
14. iris-dataset.csv
|
2.5 KB
|
11. 3.12.Example.csv
|
0.3 KB
|
02. 3.01.Country-clusters.csv
|
0.2 KB
|
/38. Advanced Statistical Methods - K-Means Clustering/
|
13. How is Clustering Useful.mp4
|
39.3 MB
|
02. A Simple Example of Clustering.mp4
|
35.8 MB
|
12. Market Segmentation with Cluster Analysis (Part 2).mp4
|
35.7 MB
|
11. Market Segmentation with Cluster Analysis (Part 1).mp4
|
29.4 MB
|
06. How to Choose the Number of Clusters.mp4
|
28.2 MB
|
08. Pros and Cons of K-Means Clustering.mp4
|
11.7 MB
|
09. To Standardize or not to Standardize.mp4
|
11.4 MB
|
01. K-Means Clustering.mp4
|
11.3 MB
|
04. Clustering Categorical Data.mp4
|
10.9 MB
|
10. Relationship between Clustering and Regression.mp4
|
3.7 MB
|
02. A Simple Example of Clustering.vtt
|
10.0 KB
|
12. Market Segmentation with Cluster Analysis (Part 2).vtt
|
9.4 KB
|
06. How to Choose the Number of Clusters.vtt
|
7.7 KB
|
11. Market Segmentation with Cluster Analysis (Part 1).vtt
|
7.7 KB
|
13. How is Clustering Useful.vtt
|
6.9 KB
|
01. K-Means Clustering.vtt
|
6.8 KB
|
09. To Standardize or not to Standardize.vtt
|
6.4 KB
|
08. Pros and Cons of K-Means Clustering.vtt
|
4.7 KB
|
04. Clustering Categorical Data.vtt
|
3.4 KB
|
10. Relationship between Clustering and Regression.vtt
|
2.3 KB
|
05. Clustering Categorical Data - Exercise.html
|
0.1 KB
|
03. A Simple Example of Clustering - Exercise.html
|
0.1 KB
|
14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
|
0.1 KB
|
15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
|
0.1 KB
|
07. How to Choose the Number of Clusters - Exercise.html
|
0.1 KB
|
/assets/
|
03. Heatmaps-with-comments.ipynb
|
18.1 KB
|
03. Heatmaps.ipynb
|
1.9 KB
|
03. Country-clusters-standardized.csv
|
0.2 KB
|
/39. Advanced Statistical Methods - Other Types of Clustering/
|
03. Heatmaps.mp4
|
19.4 MB
|
02. Dendrogram.mp4
|
19.2 MB
|
01. Types of Clustering.mp4
|
9.4 MB
|
02. Dendrogram.vtt
|
7.8 KB
|
03. Heatmaps.vtt
|
6.3 KB
|
01. Types of Clustering.vtt
|
5.2 KB
|
/assets/
|
16. movies-metadata.zip
|
12.6 MB
|
13. Marvel-Comics.zip
|
3.7 MB
|
16. ratings-small.csv
|
2.4 MB
|
10. Properties-analysis.ipynb
|
293.4 KB
|
19. interactions.csv
|
75.0 KB
|
08. Furniture-store-data-analysis.ipynb
|
53.6 KB
|
06. orders.csv
|
38.6 KB
|
19. posts.csv
|
31.5 KB
|
14. Marvel-Comics-Reg-Ex.ipynb
|
30.2 KB
|
17. Movies-Data-Base-Recommendation-Engine.ipynb
|
20.9 KB
|
04. Data-Preprocessing-Medical-Data.ipynb
|
7.7 KB
|
19. friendships.csv
|
6.1 KB
|
12. Students-Hypothesis-Testing.ipynb
|
5.7 KB
|
05. Medical-Data-ML-Attempt.ipynb
|
4.5 KB
|
19. users.csv
|
3.6 KB
|
06. ratings.csv
|
3.5 KB
|
05. patients-preprocessed.csv
|
3.4 KB
|
04. patients.csv
|
3.0 KB
|
10. properties.csv
|
2.7 KB
|
12. students.csv
|
2.1 KB
|
06. products.csv
|
1.8 KB
|
06. customers.csv
|
1.6 KB
|
05. diagnosis-mapping.csv
|
0.1 KB
|
/40. ChatGPT for Data Science/
|
05. First attempt at machine learning with ChatGPT.mp4
|
38.5 MB
|
10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.mp4
|
35.3 MB
|
19. Using ChatGPT for ethical considerations.mp4
|
35.2 MB
|
14. Decoding comic book data Python Regular Expressions and ChatGPT.mp4
|
34.7 MB
|
04. Data Preprocessing with ChatGPT.mp4
|
30.1 MB
|
08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.mp4
|
28.5 MB
|
01. Traditional data science methods and the role of ChatGPT.mp4
|
27.4 MB
|
06. Analyzing a client database with ChatGPT in Python.mp4
|
22.7 MB
|
09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.mp4
|
22.6 MB
|
17. Algorithm recommendation recommendation engine for movies with ChatGPT.mp4
|
18.7 MB
|
16. Algorithm recommendation Movie Database Analysis with ChatGPT.mp4
|
18.1 MB
|
07. Analyzing a client database with ChatGPT in Python – analyzing top products.mp4
|
15.9 MB
|
13. Marvels comic book database Intro to Regular Expressions (RegEx).mp4
|
15.7 MB
|
18. Ethical principles in data and AI utilization.mp4
|
15.4 MB
|
12. Hypothesis testing with ChatGPT.mp4
|
15.1 MB
|
03. How ChatGPT can boost your productivity.mp4
|
5.6 MB
|
02. How to install ChatGPT.mp4
|
5.5 MB
|
10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.vtt
|
7.7 KB
|
19. Using ChatGPT for ethical considerations.vtt
|
7.7 KB
|
09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.vtt
|
7.6 KB
|
01. Traditional data science methods and the role of ChatGPT.vtt
|
7.4 KB
|
14. Decoding comic book data Python Regular Expressions and ChatGPT.vtt
|
6.6 KB
|
04. Data Preprocessing with ChatGPT.vtt
|
6.6 KB
|
05. First attempt at machine learning with ChatGPT.vtt
|
6.5 KB
|
17. Algorithm recommendation recommendation engine for movies with ChatGPT.vtt
|
6.5 KB
|
08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.vtt
|
6.0 KB
|
12. Hypothesis testing with ChatGPT.vtt
|
5.8 KB
|
06. Analyzing a client database with ChatGPT in Python.vtt
|
5.3 KB
|
07. Analyzing a client database with ChatGPT in Python – analyzing top products.vtt
|
5.3 KB
|
16. Algorithm recommendation Movie Database Analysis with ChatGPT.vtt
|
4.5 KB
|
18. Ethical principles in data and AI utilization.vtt
|
4.5 KB
|
13. Marvels comic book database Intro to Regular Expressions (RegEx).vtt
|
2.8 KB
|
03. How ChatGPT can boost your productivity.vtt
|
2.5 KB
|
02. How to install ChatGPT.vtt
|
2.1 KB
|
11. Assignment 1.html
|
1.7 KB
|
15. Assignment 2.html
|
1.6 KB
|
/assets/
|
12. 365-User-Reviews-Naive-Bayes-Sentiment-Analysis.ipynb
|
1.8 MB
|
12. user-courses-review-test-set.csv
|
20.1 KB
|
/41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/
|
02. The Naive Bayes Algorithm.mp4
|
44.1 MB
|
10. Machine Learning with Naïve Bayes (First Attempt).mp4
|
29.5 MB
|
12. Testing the Model on New Data.mp4
|
21.8 MB
|
11. Machine Learning with Naïve Bayes – converting the problem to a binary one.mp4
|
19.8 MB
|
07. Optimizing User Reviews Data Preprocessing & EDA.mp4
|
19.6 MB
|
08. Reg Ex for Analyzing Text Review Data.mp4
|
17.0 MB
|
03. Tokenization and Vectorization.mp4
|
16.6 MB
|
06. Loading the Dataset and Preprocessing.mp4
|
15.5 MB
|
05. Overcome Imbalanced Data in Machine Learning.mp4
|
15.3 MB
|
09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.mp4
|
14.5 MB
|
01. Intro to the Case Study.mp4
|
10.9 MB
|
04. Imbalanced Data Sets.mp4
|
6.9 MB
|
10. Machine Learning with Naïve Bayes (First Attempt).vtt
|
8.6 KB
|
03. Tokenization and Vectorization.vtt
|
8.1 KB
|
12. Testing the Model on New Data.vtt
|
7.1 KB
|
11. Machine Learning with Naïve Bayes – converting the problem to a binary one.vtt
|
6.9 KB
|
02. The Naive Bayes Algorithm.vtt
|
6.2 KB
|
07. Optimizing User Reviews Data Preprocessing & EDA.vtt
|
6.1 KB
|
09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.vtt
|
5.5 KB
|
08. Reg Ex for Analyzing Text Review Data.vtt
|
5.2 KB
|
05. Overcome Imbalanced Data in Machine Learning.vtt
|
5.2 KB
|
01. Intro to the Case Study.vtt
|
3.8 KB
|
06. Loading the Dataset and Preprocessing.vtt
|
3.8 KB
|
04. Imbalanced Data Sets.vtt
|
3.3 KB
|
/assets/
|
04. Scalars-Vectors-and-Matrices.ipynb
|
4.7 KB
|
10. Dot-product-Part-2.ipynb
|
3.7 KB
|
06. Adding-and-subtracting-matrices.ipynb
|
3.3 KB
|
07. Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb
|
3.2 KB
|
08. Tranpose-of-a-matrix.ipynb
|
3.0 KB
|
09. Dot-product.ipynb
|
2.2 KB
|
05. Tensors.ipynb
|
2.1 KB
|
/external-links/
|
01. Math-Flashcards.url
|
0.1 KB
|
/42. Part 6 Mathematics/
|
11. Why is Linear Algebra Useful.mp4
|
92.8 MB
|
10. Dot Product of Matrices.mp4
|
36.0 MB
|
06. Addition and Subtraction of Matrices.mp4
|
23.2 MB
|
04. Arrays in Python - A Convenient Way To Represent Matrices.mp4
|
19.9 MB
|
05. What is a Tensor.mp4
|
16.3 MB
|
08. Transpose of a Matrix.mp4
|
14.9 MB
|
03. Linear Algebra and Geometry.mp4
|
14.4 MB
|
09. Dot Product.mp4
|
13.5 MB
|
01. What is a Matrix.mp4
|
12.5 MB
|
02. Scalars and Vectors.mp4
|
9.0 MB
|
07. Errors when Adding Matrices.mp4
|
6.1 MB
|
11. Why is Linear Algebra Useful.vtt
|
11.8 KB
|
10. Dot Product of Matrices.vtt
|
9.3 KB
|
04. Arrays in Python - A Convenient Way To Represent Matrices.vtt
|
6.4 KB
|
08. Transpose of a Matrix.vtt
|
5.7 KB
|
01. What is a Matrix.vtt
|
4.7 KB
|
09. Dot Product.vtt
|
4.4 KB
|
06. Addition and Subtraction of Matrices.vtt
|
4.3 KB
|
03. Linear Algebra and Geometry.vtt
|
4.2 KB
|
02. Scalars and Vectors.vtt
|
4.1 KB
|
05. What is a Tensor.vtt
|
3.9 KB
|
07. Errors when Adding Matrices.vtt
|
2.8 KB
|
/43. Part 7 Deep Learning/
|
01. What to Expect from this Part.mp4
|
12.3 MB
|
01. What to Expect from this Part.vtt
|
4.9 KB
|
/assets/
|
02. Course-Notes-Section-2.pdf
|
592.0 KB
|
01. Course-Notes-Section-2.pdf
|
592.0 KB
|
11. GD-function-example.xlsx
|
43.4 KB
|
/44. Deep Learning - Introduction to Neural Networks/
|
11. Optimization Algorithm 1-Parameter Gradient Descent.mp4
|
24.7 MB
|
12. Optimization Algorithm n-Parameter Gradient Descent.mp4
|
17.7 MB
|
06. The Linear model with Multiple Inputs and Multiple Outputs.mp4
|
17.4 MB
|
03. Types of Machine Learning.mp4
|
13.7 MB
|
01. Introduction to Neural Networks.mp4
|
11.0 MB
|
10. Common Objective Functions Cross-Entropy Loss.mp4
|
10.3 MB
|
04. The Linear Model (Linear Algebraic Version).mp4
|
8.4 MB
|
05. The Linear Model with Multiple Inputs.mp4
|
8.3 MB
|
07. Graphical Representation of Simple Neural Networks.mp4
|
8.2 MB
|
02. Training the Model.mp4
|
8.1 MB
|
08. What is the Objective Function.mp4
|
6.5 MB
|
09. Common Objective Functions L2-norm Loss.mp4
|
5.7 MB
|
11. Optimization Algorithm 1-Parameter Gradient Descent.vtt
|
9.0 KB
|
12. Optimization Algorithm n-Parameter Gradient Descent.vtt
|
8.0 KB
|
01. Introduction to Neural Networks.vtt
|
6.4 KB
|
03. Types of Machine Learning.vtt
|
5.6 KB
|
10. Common Objective Functions Cross-Entropy Loss.vtt
|
5.5 KB
|
06. The Linear model with Multiple Inputs and Multiple Outputs.vtt
|
5.0 KB
|
02. Training the Model.vtt
|
4.9 KB
|
04. The Linear Model (Linear Algebraic Version).vtt
|
3.8 KB
|
09. Common Objective Functions L2-norm Loss.vtt
|
3.0 KB
|
05. The Linear Model with Multiple Inputs.vtt
|
2.9 KB
|
07. Graphical Representation of Simple Neural Networks.vtt
|
2.8 KB
|
08. What is the Objective Function.vtt
|
2.3 KB
|
/assets/
|
01. Shortcuts-for-Jupyter.pdf
|
634.0 KB
|
05. Minimal-example-Exercise-3.d.Solution.ipynb
|
86.2 KB
|
05. Minimal-example-Exercise-3.c.Solution.ipynb
|
71.8 KB
|
05. Minimal-example-Exercise-1-Solution.ipynb
|
70.7 KB
|
05. Minimal-example-Exercise-5-Solution.ipynb
|
70.5 KB
|
05. Minimal-example-Exercise-3.a.Solution.ipynb
|
69.5 KB
|
05. Minimal-example-Exercise-3.b.Solution.ipynb
|
69.3 KB
|
05. Minimal-example-Exercise-4-Solution.ipynb
|
68.1 KB
|
05. Minimal-example-Exercise-6-Solution.ipynb
|
63.2 KB
|
05. Minimal-example-Exercise-6.ipynb
|
63.2 KB
|
05. Minimal-example-Exercise-2-Solution.ipynb
|
62.9 KB
|
05. Minimal-example-All-Exercises.ipynb
|
13.2 KB
|
04. Minimal-example-Part-4-Complete.ipynb
|
11.7 KB
|
03. Minimal-example-Part-3.ipynb
|
7.0 KB
|
02. Minimal-example-Part-2.ipynb
|
3.7 KB
|
01. Minimal-example-Part-1.ipynb
|
1.2 KB
|
/45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/
|
04. Basic NN Example (Part 4).mp4
|
41.9 MB
|
03. Basic NN Example (Part 3).mp4
|
16.4 MB
|
02. Basic NN Example (Part 2).mp4
|
16.0 MB
|
01. Basic NN Example (Part 1).mp4
|
9.8 MB
|
04. Basic NN Example (Part 4).vtt
|
11.2 KB
|
02. Basic NN Example (Part 2).vtt
|
6.8 KB
|
01. Basic NN Example (Part 1).vtt
|
4.6 KB
|
03. Basic NN Example (Part 3).vtt
|
4.5 KB
|
05. Basic NN Example Exercises.html
|
1.7 KB
|
/assets/
|
01. Shortcuts-for-Jupyter.pdf
|
634.0 KB
|
09. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
|
86.5 KB
|
09. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
|
85.7 KB
|
09. TensorFlow-Minimal-example-All-exercises.ipynb
|
85.6 KB
|
08. TensorFlow-Minimal-example-complete-with-comments.ipynb
|
84.3 KB
|
09. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
|
79.4 KB
|
08. TensorFlow-Minimal-example-complete.ipynb
|
78.7 KB
|
07. TensorFlow-Minimal-example-Part3.ipynb
|
78.4 KB
|
09. TensorFlow-Minimal-example-Exercise-1-Solution.ipynb
|
28.6 KB
|
06. TensorFlow-Minimal-example-Part2.ipynb
|
9.3 KB
|
05. TensorFlow-Minimal-example-Part1.ipynb
|
1.7 KB
|
/46. Deep Learning - TensorFlow 2.0 Introduction/
|
01. How to Install TensorFlow 2.0.mp4
|
28.7 MB
|
06. Outlining the Model with TensorFlow 2.mp4
|
28.3 MB
|
07. Interpreting the Result and Extracting the Weights and Bias.mp4
|
27.2 MB
|
08. Customizing a TensorFlow 2 Model.mp4
|
17.6 MB
|
03. TensorFlow 1 vs TensorFlow 2.mp4
|
16.0 MB
|
02. TensorFlow Outline and Comparison with Other Libraries.mp4
|
16.0 MB
|
05. Types of File Formats Supporting TensorFlow.mp4
|
9.3 MB
|
04. A Note on TensorFlow 2 Syntax.mp4
|
4.9 MB
|
06. Outlining the Model with TensorFlow 2.vtt
|
8.6 KB
|
07. Interpreting the Result and Extracting the Weights and Bias.vtt
|
6.9 KB
|
01. How to Install TensorFlow 2.0.vtt
|
6.7 KB
|
02. TensorFlow Outline and Comparison with Other Libraries.vtt
|
5.6 KB
|
08. Customizing a TensorFlow 2 Model.vtt
|
4.4 KB
|
03. TensorFlow 1 vs TensorFlow 2.vtt
|
4.1 KB
|
05. Types of File Formats Supporting TensorFlow.vtt
|
3.5 KB
|
04. A Note on TensorFlow 2 Syntax.vtt
|
1.5 KB
|
09. Basic NN with TensorFlow Exercises.html
|
1.3 KB
|
/assets/
|
02. Course-Notes-Section-6.pdf
|
958.9 KB
|
01. Course-Notes-Section-6.pdf
|
958.9 KB
|
09. Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf
|
186.8 KB
|
/47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/
|
03. Digging into a Deep Net.mp4
|
24.8 MB
|
04. Non-Linearities and their Purpose.mp4
|
23.6 MB
|
07. Backpropagation.mp4
|
21.3 MB
|
02. What is a Deep Net.mp4
|
9.6 MB
|
05. Activation Functions.mp4
|
9.3 MB
|
06. Activation Functions Softmax Activation.mp4
|
9.2 MB
|
08. Backpropagation Picture.mp4
|
8.5 MB
|
01. What is a Layer.mp4
|
5.4 MB
|
03. Digging into a Deep Net.vtt
|
7.1 KB
|
05. Activation Functions.vtt
|
5.4 KB
|
07. Backpropagation.vtt
|
4.7 KB
|
06. Activation Functions Softmax Activation.vtt
|
4.6 KB
|
04. Non-Linearities and their Purpose.vtt
|
4.3 KB
|
08. Backpropagation Picture.vtt
|
3.9 KB
|
02. What is a Deep Net.vtt
|
3.3 KB
|
01. What is a Layer.vtt
|
2.7 KB
|
09. Backpropagation - A Peek into the Mathematics of Optimization.html
|
0.5 KB
|
/48. Deep Learning - Overfitting/
|
02. Underfitting and Overfitting for Classification.mp4
|
14.7 MB
|
01. What is Overfitting.mp4
|
11.3 MB
|
06. Early Stopping or When to Stop Training.mp4
|
10.8 MB
|
04. Training, Validation, and Test Datasets.mp4
|
9.9 MB
|
03. What is Validation.mp4
|
8.8 MB
|
05. N-Fold Cross Validation.mp4
|
6.5 MB
|
06. Early Stopping or When to Stop Training.vtt
|
7.1 KB
|
01. What is Overfitting.vtt
|
6.0 KB
|
03. What is Validation.vtt
|
5.1 KB
|
05. N-Fold Cross Validation.vtt
|
4.5 KB
|
04. Training, Validation, and Test Datasets.vtt
|
3.5 KB
|
02. Underfitting and Overfitting for Classification.vtt
|
2.9 KB
|
/49. Deep Learning - Initialization/
|
01. What is Initialization.mp4
|
9.3 MB
|
02. Types of Simple Initializations.mp4
|
6.0 MB
|
03. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4
|
5.7 MB
|
03. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt
|
3.9 KB
|
02. Types of Simple Initializations.vtt
|
3.9 KB
|
01. What is Initialization.vtt
|
3.8 KB
|
/50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/
|
04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4
|
18.4 MB
|
06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4
|
8.9 MB
|
01. Stochastic Gradient Descent.mp4
|
8.2 MB
|
07. Adam (Adaptive Moment Estimation).mp4
|
7.5 MB
|
03. Momentum.mp4
|
5.4 MB
|
02. Problems with Gradient Descent.mp4
|
3.8 MB
|
05. Learning Rate Schedules Visualized.mp4
|
3.3 MB
|
04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt
|
6.5 KB
|
06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt
|
5.7 KB
|
01. Stochastic Gradient Descent.vtt
|
4.9 KB
|
03. Momentum.vtt
|
3.7 KB
|
07. Adam (Adaptive Moment Estimation).vtt
|
3.5 KB
|
02. Problems with Gradient Descent.vtt
|
3.1 KB
|
05. Learning Rate Schedules Visualized.vtt
|
2.3 KB
|
/51. Deep Learning - Preprocessing/
|
03. Standardization.mp4
|
12.7 MB
|
01. Preprocessing Introduction.mp4
|
9.7 MB
|
05. Binary and One-Hot Encoding.mp4
|
9.0 MB
|
04. Preprocessing Categorical Data.mp4
|
5.7 MB
|
02. Types of Basic Preprocessing.mp4
|
3.4 MB
|
03. Standardization.vtt
|
6.3 KB
|
05. Binary and One-Hot Encoding.vtt
|
5.4 KB
|
01. Preprocessing Introduction.vtt
|
4.2 KB
|
04. Preprocessing Categorical Data.vtt
|
2.9 KB
|
02. Types of Basic Preprocessing.vtt
|
1.9 KB
|
/assets/
|
11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
|
21.1 KB
|
11. TensorFlow-MNIST-All-Exercises.ipynb
|
17.1 KB
|
11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
|
16.2 KB
|
11. 2.TensorFlow-MNIST-Depth-Solution.ipynb
|
15.7 KB
|
11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
|
15.7 KB
|
11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
|
15.5 KB
|
11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
|
15.5 KB
|
11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
|
15.5 KB
|
11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb
|
15.4 KB
|
11. 1.TensorFlow-MNIST-Width-Solution.ipynb
|
15.2 KB
|
11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
|
15.1 KB
|
12. TensorFlow-MNIST-complete-with-comments.ipynb
|
14.9 KB
|
10. TensorFlow-MNIST-Part6-with-comments.ipynb
|
12.8 KB
|
09. TensorFlow-MNIST-Part5-with-comments.ipynb
|
11.2 KB
|
08. TensorFlow-MNIST-Part4-with-comments.ipynb
|
10.7 KB
|
07. TensorFlow-MNIST-Part3-with-comments.ipynb
|
8.8 KB
|
12. TensorFlow-MNIST-complete.ipynb
|
6.9 KB
|
05. TensorFlow-MNIST-Part2-with-comments.ipynb
|
6.5 KB
|
03. TensorFlow-MNIST-Part1-with-comments.ipynb
|
4.1 KB
|
/52. Deep Learning - Classifying on the MNIST Dataset/
|
06. MNIST Preprocess the Data - Shuffle and Batch.mp4
|
34.3 MB
|
10. MNIST Learning.mp4
|
32.5 MB
|
04. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4
|
24.0 MB
|
12. MNIST Testing the Model.mp4
|
23.7 MB
|
08. MNIST Outline the Model.mp4
|
23.1 MB
|
03. MNIST Importing the Relevant Packages and Loading the Data.mp4
|
12.8 MB
|
09. MNIST Select the Loss and the Optimizer.mp4
|
11.2 MB
|
02. MNIST How to Tackle the MNIST.mp4
|
8.3 MB
|
01. MNIST The Dataset.mp4
|
4.8 MB
|
06. MNIST Preprocess the Data - Shuffle and Batch.vtt
|
9.8 KB
|
10. MNIST Learning.vtt
|
8.1 KB
|
08. MNIST Outline the Model.vtt
|
7.3 KB
|
04. MNIST Preprocess the Data - Create a Validation Set and Scale It.vtt
|
6.7 KB
|
12. MNIST Testing the Model.vtt
|
6.1 KB
|
01. MNIST The Dataset.vtt
|
3.7 KB
|
02. MNIST How to Tackle the MNIST.vtt
|
3.7 KB
|
03. MNIST Importing the Relevant Packages and Loading the Data.vtt
|
3.1 KB
|
09. MNIST Select the Loss and the Optimizer.vtt
|
3.1 KB
|
11. MNIST - Exercises.html
|
2.0 KB
|
07. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html
|
0.1 KB
|
05. MNIST Preprocess the Data - Scale the Test Data - Exercise.html
|
0.1 KB
|
/assets/
|
01. Audiobooks-data.csv
|
727.8 KB
|
08. TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb
|
20.2 KB
|
11. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
|
12.2 KB
|
12. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
|
12.2 KB
|
04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
|
11.5 KB
|
09. TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb
|
10.3 KB
|
05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
|
10.3 KB
|
05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
|
8.8 KB
|
04. TensorFlow-Audiobooks-Preprocessing.ipynb
|
5.7 KB
|
07. TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb
|
4.7 KB
|
/53. Deep Learning - Business Case Example/
|
04. Business Case Preprocessing the Data.mp4
|
77.4 MB
|
01. Business Case Exploring the Dataset and Identifying Predictors.mp4
|
53.8 MB
|
09. Business Case Setting an Early Stopping Mechanism.mp4
|
45.9 MB
|
08. Business Case Learning and Interpreting the Result.mp4
|
30.8 MB
|
03. Business Case Balancing the Dataset.mp4
|
23.4 MB
|
06. Business Case Load the Preprocessed Data.mp4
|
14.5 MB
|
11. Business Case Testing the Model.mp4
|
8.6 MB
|
02. Business Case Outlining the Solution.mp4
|
3.2 MB
|
04. Business Case Preprocessing the Data.vtt
|
13.9 KB
|
01. Business Case Exploring the Dataset and Identifying Predictors.vtt
|
11.3 KB
|
09. Business Case Setting an Early Stopping Mechanism.vtt
|
8.3 KB
|
08. Business Case Learning and Interpreting the Result.vtt
|
6.5 KB
|
06. Business Case Load the Preprocessed Data.vtt
|
4.8 KB
|
03. Business Case Balancing the Dataset.vtt
|
4.4 KB
|
11. Business Case Testing the Model.vtt
|
2.2 KB
|
02. Business Case Outlining the Solution.vtt
|
2.0 KB
|
12. Business Case Final Exercise.html
|
0.4 KB
|
05. Business Case Preprocessing the Data - Exercise.html
|
0.4 KB
|
10. Setting an Early Stopping Mechanism - Exercise.html
|
0.2 KB
|
07. Business Case Load the Preprocessed Data - Exercise.html
|
0.1 KB
|
/54. Deep Learning - Conclusion/
|
06. An Overview of non-NN Approaches.mp4
|
16.9 MB
|
04. An overview of CNNs.mp4
|
14.0 MB
|
01. Summary on What You've Learned.mp4
|
10.3 MB
|
05. An Overview of RNNs.mp4
|
7.3 MB
|
02. What's Further out there in terms of Machine Learning.mp4
|
5.0 MB
|
04. An overview of CNNs.vtt
|
6.5 KB
|
06. An Overview of non-NN Approaches.vtt
|
5.9 KB
|
01. Summary on What You've Learned.vtt
|
5.6 KB
|
05. An Overview of RNNs.vtt
|
4.1 KB
|
02. What's Further out there in terms of Machine Learning.vtt
|
2.8 KB
|
03. DeepMind and Deep Learning.html
|
1.1 KB
|
/assets/
|
05. Shortcuts-for-Jupyter.pdf
|
634.0 KB
|
10. TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb
|
51.2 KB
|
10. TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb
|
27.6 KB
|
10. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
|
27.4 KB
|
10. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
|
26.2 KB
|
10. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
|
26.1 KB
|
10. TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb
|
24.2 KB
|
10. TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb
|
22.3 KB
|
10. TensorFlow-Minimal-Example-All-Exercises.ipynb
|
14.3 KB
|
09. 5.6.TensorFlow-Minimal-example-complete.ipynb
|
12.4 KB
|
08. 5.5.TensorFlow-Minimal-example-Part-3.ipynb
|
8.9 KB
|
07. 5.4.TensorFlow-Minimal-example-Part-2.ipynb
|
6.3 KB
|
06. 5.3.TensorFlow-Minimal-example-Part-1.ipynb
|
3.4 KB
|
/55. Appendix Deep Learning - TensorFlow 1 Introduction/
|
07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4
|
18.5 MB
|
09. Basic NN Example with TF Model Output.mp4
|
17.9 MB
|
04. TensorFlow Intro.mp4
|
17.7 MB
|
08. Basic NN Example with TF Loss Function and Gradient Descent.mp4
|
14.3 MB
|
05. Actual Introduction to TensorFlow.mp4
|
9.5 MB
|
06. Types of File Formats, supporting Tensors.mp4
|
9.3 MB
|
02. How to Install TensorFlow 1.mp4
|
5.2 MB
|
07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt
|
8.2 KB
|
09. Basic NN Example with TF Model Output.vtt
|
8.0 KB
|
04. TensorFlow Intro.vtt
|
5.5 KB
|
08. Basic NN Example with TF Loss Function and Gradient Descent.vtt
|
5.0 KB
|
06. Types of File Formats, supporting Tensors.vtt
|
3.5 KB
|
02. How to Install TensorFlow 1.vtt
|
3.5 KB
|
05. Actual Introduction to TensorFlow.vtt
|
2.4 KB
|
03. A Note on Installing Packages in Anaconda.html
|
2.3 KB
|
10. Basic NN Example with TF Exercises.html
|
1.6 KB
|
01. READ ME!!!!.html
|
0.6 KB
|
/assets/
|
11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb
|
18.1 KB
|
11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
|
17.2 KB
|
10. TensorFlow-MNIST-Exercises-All.ipynb
|
15.8 KB
|
11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
|
15.6 KB
|
11. 2.TensorFlow-MNIST-Depth-Solution.ipynb
|
15.2 KB
|
11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
|
14.7 KB
|
11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
|
14.6 KB
|
11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
|
14.5 KB
|
11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
|
14.4 KB
|
11. 1.TensorFlow-MNIST-Width-Solution.ipynb
|
14.4 KB
|
11. 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb
|
14.3 KB
|
11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
|
14.3 KB
|
09. 12.9.TensorFlow-MNIST-with-comments.ipynb
|
13.3 KB
|
08. 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb
|
11.8 KB
|
07. 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb
|
8.7 KB
|
06. 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb
|
8.1 KB
|
05. 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb
|
7.5 KB
|
04. 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb
|
6.2 KB
|
03. 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb
|
4.0 KB
|
/56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/
|
09. MNIST Results and Testing.mp4
|
40.0 MB
|
04. MNIST Model Outline.mp4
|
36.4 MB
|
08. MNIST Learning.mp4
|
33.4 MB
|
06. Calculating the Accuracy of the Model.mp4
|
25.6 MB
|
05. MNIST Loss and Optimization Algorithm.mp4
|
16.6 MB
|
03. MNIST Relevant Packages.mp4
|
11.8 MB
|
07. MNIST Batching and Early Stopping.mp4
|
9.9 MB
|
02. MNIST How to Tackle the MNIST.mp4
|
8.4 MB
|
01. MNIST What is the MNIST Dataset.mp4
|
5.0 MB
|
08. MNIST Learning.vtt
|
10.7 KB
|
04. MNIST Model Outline.vtt
|
9.4 KB
|
09. MNIST Results and Testing.vtt
|
8.4 KB
|
06. Calculating the Accuracy of the Model.vtt
|
5.4 KB
|
02. MNIST How to Tackle the MNIST.vtt
|
3.9 KB
|
01. MNIST What is the MNIST Dataset.vtt
|
3.7 KB
|
05. MNIST Loss and Optimization Algorithm.vtt
|
3.7 KB
|
07. MNIST Batching and Early Stopping.vtt
|
2.9 KB
|
11. MNIST Solutions.html
|
2.3 KB
|
03. MNIST Relevant Packages.vtt
|
2.2 KB
|
10. MNIST Exercises.html
|
2.2 KB
|
/assets/
|
12. Audiobooks-data.csv
|
727.8 KB
|
03. Audiobooks-data.csv
|
727.8 KB
|
04. Audiobooks-data.csv
|
727.8 KB
|
01. Audiobooks-data.csv
|
727.8 KB
|
05. Audiobooks-data.csv
|
727.8 KB
|
11. Audiobooks-data.csv
|
727.8 KB
|
11. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
|
14.7 KB
|
12. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
|
14.7 KB
|
08. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
|
13.0 KB
|
09. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
|
13.0 KB
|
04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
|
11.5 KB
|
12. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
|
11.5 KB
|
11. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
|
11.5 KB
|
08. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
|
10.9 KB
|
09. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
|
10.9 KB
|
07. TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb
|
10.6 KB
|
05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
|
10.3 KB
|
07. TensorFlow-Audiobooks-Outlining-the-model.ipynb
|
9.6 KB
|
05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
|
8.8 KB
|
04. TensorFlow-Audiobooks-Preprocessing.ipynb
|
5.7 KB
|
/57. Appendix Deep Learning - TensorFlow 1 Business Case/
|
04. Business Case Preprocessing.mp4
|
78.0 MB
|
01. Business Case Getting Acquainted with the Dataset.mp4
|
63.2 MB
|
06. Creating a Data Provider.mp4
|
59.0 MB
|
07. Business Case Model Outline.mp4
|
44.6 MB
|
03. The Importance of Working with a Balanced Dataset.mp4
|
28.6 MB
|
08. Business Case Optimization.mp4
|
28.2 MB
|
11. Business Case A Comment on the Homework.mp4
|
21.6 MB
|
09. Business Case Interpretation.mp4
|
19.5 MB
|
10. Business Case Testing the Model.mp4
|
4.6 MB
|
02. Business Case Outlining the Solution.mp4
|
4.4 MB
|
04. Business Case Preprocessing.vtt
|
13.9 KB
|
01. Business Case Getting Acquainted with the Dataset.vtt
|
11.2 KB
|
06. Creating a Data Provider.vtt
|
8.5 KB
|
07. Business Case Model Outline.vtt
|
7.3 KB
|
08. Business Case Optimization.vtt
|
7.1 KB
|
11. Business Case A Comment on the Homework.vtt
|
5.5 KB
|
03. The Importance of Working with a Balanced Dataset.vtt
|
4.5 KB
|
09. Business Case Interpretation.vtt
|
3.2 KB
|
10. Business Case Testing the Model.vtt
|
2.8 KB
|
02. Business Case Outlining the Solution.vtt
|
2.7 KB
|
12. Business Case Final Exercise.html
|
0.4 KB
|
05. Business Case Preprocessing Exercise.html
|
0.4 KB
|
/58. Software Integration/
|
02. What are Data Connectivity, APIs, and Endpoints.mp4
|
63.1 MB
|
03. Taking a Closer Look at APIs.mp4
|
25.7 MB
|
01. What are Data, Servers, Clients, Requests, and Responses.mp4
|
20.5 MB
|
04. Communication between Software Products through Text Files.mp4
|
18.4 MB
|
05. Software Integration - Explained.mp4
|
16.8 MB
|
03. Taking a Closer Look at APIs.vtt
|
11.2 KB
|
02. What are Data Connectivity, APIs, and Endpoints.vtt
|
9.4 KB
|
05. Software Integration - Explained.vtt
|
7.2 KB
|
01. What are Data, Servers, Clients, Requests, and Responses.vtt
|
6.4 KB
|
04. Communication between Software Products through Text Files.vtt
|
6.0 KB
|
/59. Case Study - What's Next in the Course/
|
03. Introducing the Data Set.mp4
|
25.4 MB
|
01. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4
|
20.6 MB
|
02. The Business Task.mp4
|
11.8 MB
|
01. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt
|
5.7 KB
|
03. Introducing the Data Set.vtt
|
4.4 KB
|
02. The Business Task.vtt
|
4.2 KB
|
/assets/
|
29. Absenteeism-Exercise-Preprocessing-LECTURES.ipynb
|
8.0 MB
|
01. data-preprocessing-homework.pdf
|
137.7 KB
|
01. Absenteeism-data.csv
|
32.8 KB
|
01. df-preprocessed.csv
|
29.8 KB
|
32. Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb
|
8.7 KB
|
29. Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb
|
8.5 KB
|
29. Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb
|
7.5 KB
|
23. Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb
|
4.9 KB
|
32. Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb
|
4.2 KB
|
/60. Case Study - Preprocessing the 'Absenteeism_data'/
|
11. Obtaining Dummies from a Single Feature.mp4
|
73.1 MB
|
03. Checking the Content of the Data Set.mp4
|
56.6 MB
|
16. Classifying the Various Reasons for Absence.mp4
|
53.8 MB
|
07. Dropping a Column from a DataFrame in Python.mp4
|
43.2 MB
|
26. Analyzing the Dates from the Initial Data Set.mp4
|
42.1 MB
|
27. Extracting the Month Value from the Date Column.mp4
|
35.5 MB
|
10. Analyzing the Reasons for Absence.mp4
|
29.0 MB
|
17. Using .concat() in Python.mp4
|
28.7 MB
|
31. Working on Education, Children, and Pets.mp4
|
28.3 MB
|
02. Importing the Absenteeism Data in Python.mp4
|
20.5 MB
|
28. Extracting the Day of the Week from the Date Column.mp4
|
20.1 MB
|
04. Introduction to Terms with Multiple Meanings.mp4
|
18.9 MB
|
23. Creating Checkpoints while Coding in Jupyter.mp4
|
18.2 MB
|
30. Analyzing Several Straightforward Columns for this Exercise.mp4
|
15.0 MB
|
32. Final Remarks of this Section.mp4
|
14.2 MB
|
20. Reordering Columns in a Pandas DataFrame in Python.mp4
|
10.5 MB
|
06. Using a Statistical Approach towards the Solution to the Exercise.mp4
|
10.4 MB
|
15. More on Dummy Variables A Statistical Perspective.mp4
|
6.1 MB
|
11. Obtaining Dummies from a Single Feature.vtt
|
10.8 KB
|
16. Classifying the Various Reasons for Absence.vtt
|
10.8 KB
|
26. Analyzing the Dates from the Initial Data Set.vtt
|
9.1 KB
|
07. Dropping a Column from a DataFrame in Python.vtt
|
8.4 KB
|
27. Extracting the Month Value from the Date Column.vtt
|
8.2 KB
|
03. Checking the Content of the Data Set.vtt
|
7.3 KB
|
10. Analyzing the Reasons for Absence.vtt
|
6.2 KB
|
31. Working on Education, Children, and Pets.vtt
|
6.1 KB
|
17. Using .concat() in Python.vtt
|
5.3 KB
|
28. Extracting the Day of the Week from the Date Column.vtt
|
4.9 KB
|
30. Analyzing Several Straightforward Columns for this Exercise.vtt
|
4.7 KB
|
04. Introduction to Terms with Multiple Meanings.vtt
|
4.4 KB
|
02. Importing the Absenteeism Data in Python.vtt
|
4.1 KB
|
23. Creating Checkpoints while Coding in Jupyter.vtt
|
3.8 KB
|
06. Using a Statistical Approach towards the Solution to the Exercise.vtt
|
3.1 KB
|
05. What's Regression Analysis - a Quick Refresher.html
|
2.9 KB
|
32. Final Remarks of this Section.vtt
|
2.7 KB
|
01. What to Expect from the Following Sections.html
|
2.5 KB
|
14. Dropping a Dummy Variable from the Data Set.html
|
2.4 KB
|
20. Reordering Columns in a Pandas DataFrame in Python.vtt
|
1.9 KB
|
15. More on Dummy Variables A Statistical Perspective.vtt
|
1.7 KB
|
29. EXERCISE - Removing the Date Column.html
|
1.2 KB
|
33. A Note on Exporting Your Data as a .csv File.html
|
0.9 KB
|
08. EXERCISE - Dropping a Column from a DataFrame in Python.html
|
0.9 KB
|
22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html
|
0.5 KB
|
18. EXERCISE - Using .concat() in Python.html
|
0.2 KB
|
21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html
|
0.2 KB
|
19. SOLUTION - Using .concat() in Python.html
|
0.1 KB
|
24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html
|
0.1 KB
|
12. EXERCISE - Obtaining Dummies from a Single Feature.html
|
0.1 KB
|
25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html
|
0.1 KB
|
13. SOLUTION - Obtaining Dummies from a Single Feature.html
|
0.1 KB
|
09. SOLUTION - Dropping a Column from a DataFrame in Python.html
|
0.1 KB
|
/assets/
|
01. Absenteeism-preprocessed.csv
|
29.8 KB
|
/external-links/
|
11. Logistic-Regression-prior-to-Backward-Elimination.url
|
0.2 KB
|
09. Logistic-Regression-prior-to-Custom-Scaler.url
|
0.2 KB
|
15. Logistic-Regression-with-Comments.url
|
0.2 KB
|
15. Logistic-Regression.url
|
0.2 KB
|
/61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/
|
08. Interpreting the Coefficients for Our Problem.mp4
|
43.1 MB
|
05. Splitting the Data for Training and Testing.mp4
|
37.8 MB
|
02. Creating the Targets for the Logistic Regression.mp4
|
34.0 MB
|
11. Backward Elimination or How to Simplify Your Model.mp4
|
33.4 MB
|
12. Testing the Model We Created.mp4
|
33.1 MB
|
16. Preparing the Deployment of the Model through a Module.mp4
|
29.9 MB
|
07. Creating a Summary Table with the Coefficients and Intercept.mp4
|
28.3 MB
|
13. Saving the Model and Preparing it for Deployment.mp4
|
26.8 MB
|
09. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4
|
17.7 MB
|
06. Fitting the Model and Assessing its Accuracy.mp4
|
16.0 MB
|
10. Interpreting the Coefficients of the Logistic Regression.mp4
|
15.9 MB
|
04. Standardizing the Data.mp4
|
15.9 MB
|
01. Exploring the Problem with a Machine Learning Mindset.mp4
|
13.6 MB
|
03. Selecting the Inputs for the Logistic Regression.mp4
|
9.1 MB
|
02. Creating the Targets for the Logistic Regression.vtt
|
8.9 KB
|
08. Interpreting the Coefficients for Our Problem.vtt
|
8.7 KB
|
05. Splitting the Data for Training and Testing.vtt
|
8.7 KB
|
10. Interpreting the Coefficients of the Logistic Regression.vtt
|
7.7 KB
|
06. Fitting the Model and Assessing its Accuracy.vtt
|
7.5 KB
|
12. Testing the Model We Created.vtt
|
6.7 KB
|
07. Creating a Summary Table with the Coefficients and Intercept.vtt
|
6.5 KB
|
16. Preparing the Deployment of the Model through a Module.vtt
|
6.0 KB
|
13. Saving the Model and Preparing it for Deployment.vtt
|
5.9 KB
|
11. Backward Elimination or How to Simplify Your Model.vtt
|
5.5 KB
|
09. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt
|
5.4 KB
|
01. Exploring the Problem with a Machine Learning Mindset.vtt
|
4.9 KB
|
04. Standardizing the Data.vtt
|
4.4 KB
|
03. Selecting the Inputs for the Logistic Regression.vtt
|
3.7 KB
|
14. ARTICLE - A Note on 'pickling'.html
|
2.2 KB
|
15. EXERCISE - Saving the Model (and Scaler).html
|
0.3 KB
|
/assets/
|
01. Absenteeism-Exercise-Integration.ipynb
|
63.8 KB
|
01. absenteeism-module.py
|
6.8 KB
|
01. Absenteeism-new-data.csv
|
1.9 KB
|
01. scaler
|
1.9 KB
|
01. model
|
1.0 KB
|
04. Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb
|
1.0 KB
|
/62. Case Study - Loading the 'absenteeism_module'/
|
03. Deploying the 'absenteeism_module' - Part II.mp4
|
47.3 MB
|
02. Deploying the 'absenteeism_module' - Part I.mp4
|
20.6 MB
|
03. Deploying the 'absenteeism_module' - Part II.vtt
|
8.2 KB
|
02. Deploying the 'absenteeism_module' - Part I.vtt
|
5.1 KB
|
04. Exporting the Obtained Data Set as a .csv.html
|
1.0 KB
|
01. Are You Sure You're All Set.html
|
0.5 KB
|
/assets/
|
02. Absenteeism-predictions.csv
|
2.2 KB
|
01. Absenteeism-predictions.csv
|
2.2 KB
|
/63. Case Study - Analyzing the Predicted Outputs in Tableau/
|
04. Analyzing Reasons vs Probability in Tableau.mp4
|
42.2 MB
|
02. Analyzing Age vs Probability in Tableau.mp4
|
40.6 MB
|
06. Analyzing Transportation Expense vs Probability in Tableau.mp4
|
17.3 MB
|
02. Analyzing Age vs Probability in Tableau.vtt
|
10.5 KB
|
04. Analyzing Reasons vs Probability in Tableau.vtt
|
9.9 KB
|
06. Analyzing Transportation Expense vs Probability in Tableau.vtt
|
7.8 KB
|
05. EXERCISE - Transportation Expense vs Probability.html
|
0.6 KB
|
03. EXERCISE - Reasons vs Probability.html
|
0.4 KB
|
01. EXERCISE - Age vs Probability.html
|
0.4 KB
|
/assets/
|
01. Additional-Python-Tools-Solutions.ipynb
|
26.1 KB
|
06. Additional-Python-Tools-Solutions.ipynb
|
26.1 KB
|
06. Additional-Python-Tools-Lectures.ipynb
|
13.8 KB
|
01. Additional-Python-Tools-Lectures.ipynb
|
13.8 KB
|
06. Additional-Python-Tools-Exercises.ipynb
|
11.7 KB
|
01. Additional-Python-Tools-Exercises.ipynb
|
11.7 KB
|
/64. Appendix - Additional Python Tools/
|
05. List Comprehensions.mp4
|
45.3 MB
|
04. Triple Nested For Loops.mp4
|
34.6 MB
|
01. Using the .format() Method.mp4
|
26.9 MB
|
06. Anonymous (Lambda) Functions.mp4
|
23.9 MB
|
02. Iterating Over Range Objects.mp4
|
13.2 MB
|
03. Introduction to Nested For Loops.mp4
|
12.8 MB
|
05. List Comprehensions.vtt
|
13.1 KB
|
01. Using the .format() Method.vtt
|
13.0 KB
|
06. Anonymous (Lambda) Functions.vtt
|
10.7 KB
|
03. Introduction to Nested For Loops.vtt
|
8.7 KB
|
04. Triple Nested For Loops.vtt
|
8.7 KB
|
02. Iterating Over Range Objects.vtt
|
6.6 KB
|
/assets/
|
13. Sales-products.csv
|
155.9 KB
|
01. Sales-products.csv
|
155.9 KB
|
13. pandas-Fundamentals-Solutions.ipynb
|
121.2 KB
|
01. pandas-Fundamentals-Solutions.ipynb
|
121.2 KB
|
13. Lending-company.csv
|
115.1 KB
|
01. Lending-company.csv
|
115.1 KB
|
13. pandas-Fundamentals-Exercises.ipynb
|
31.7 KB
|
01. pandas-Fundamentals-Exercises.ipynb
|
31.7 KB
|
13. pandas-Fundamentals-Lectures.ipynb
|
21.8 KB
|
01. pandas-Fundamentals-Lectures.ipynb
|
21.8 KB
|
13. Location.csv
|
13.8 KB
|
01. Location.csv
|
13.8 KB
|
13. Region.csv
|
10.5 KB
|
01. Region.csv
|
10.5 KB
|
/65. Appendix - pandas Fundamentals/
|
11. Data Selection in pandas DataFrames.mp4
|
39.1 MB
|
12. pandas DataFrames - Indexing with .iloc[].mp4
|
33.8 MB
|
10. pandas DataFrames - Common Attributes.mp4
|
26.9 MB
|
01. Introduction to pandas Series.mp4
|
26.2 MB
|
06. Using .unique() and .nunique().mp4
|
25.5 MB
|
05. Parameters and Arguments in pandas.mp4
|
22.2 MB
|
13. pandas DataFrames - Indexing with .loc[].mp4
|
21.7 MB
|
09. Introduction to pandas DataFrames - Part II.mp4
|
18.7 MB
|
07. Using .sort_values().mp4
|
16.0 MB
|
03. Working with Methods in Python - Part I.mp4
|
13.9 MB
|
08. Introduction to pandas DataFrames - Part I.mp4
|
13.1 MB
|
04. Working with Methods in Python - Part II.mp4
|
9.4 MB
|
01. Introduction to pandas Series.vtt
|
11.1 KB
|
11. Data Selection in pandas DataFrames.vtt
|
10.8 KB
|
12. pandas DataFrames - Indexing with .iloc[].vtt
|
8.5 KB
|
09. Introduction to pandas DataFrames - Part II.vtt
|
8.2 KB
|
08. Introduction to pandas DataFrames - Part I.vtt
|
7.5 KB
|
03. Working with Methods in Python - Part I.vtt
|
7.4 KB
|
10. pandas DataFrames - Common Attributes.vtt
|
6.7 KB
|
06. Using .unique() and .nunique().vtt
|
6.0 KB
|
05. Parameters and Arguments in pandas.vtt
|
5.9 KB
|
07. Using .sort_values().vtt
|
5.7 KB
|
13. pandas DataFrames - Indexing with .loc[].vtt
|
5.7 KB
|
04. Working with Methods in Python - Part II.vtt
|
4.0 KB
|
02. A Note on Completing the Upcoming Coding Exercises.html
|
3.0 KB
|
/assets/
|
01. 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf
|
16.3 MB
|
/66. Bonus Lecture/
|
01. Bonus Lecture Next Steps.html
|
4.4 KB
|
Total files 1506
|