/04. Introduction to Optimisation and the Gradient Descent Algorithm/
|
8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4
|
305.5 MB
|
1. What's Coming Up.mp4
|
22.0 MB
|
1. What's Coming Up.vtt
|
3.3 KB
|
1.1 Course Resources.html
|
0.1 KB
|
2. How a Machine Learns.mp4
|
23.9 MB
|
2. How a Machine Learns.vtt
|
6.2 KB
|
3. Introduction to Cost Functions.mp4
|
69.4 MB
|
3. Introduction to Cost Functions.vtt
|
8.1 KB
|
4. LaTeX Markdown and Generating Data with Numpy.mp4
|
94.9 MB
|
4. LaTeX Markdown and Generating Data with Numpy.vtt
|
15.1 KB
|
5. Understanding the Power Rule & Creating Charts with Subplots.mp4
|
94.5 MB
|
5. Understanding the Power Rule & Creating Charts with Subplots.vtt
|
15.6 KB
|
6. [Python] - Loops and the Gradient Descent Algorithm.mp4
|
301.4 MB
|
6. [Python] - Loops and the Gradient Descent Algorithm.vtt
|
36.7 KB
|
7. Python Loops Coding Exercise.html
|
0.1 KB
|
8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).vtt
|
37.3 KB
|
9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4
|
229.7 MB
|
9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).vtt
|
29.2 KB
|
10. Understanding the Learning Rate.mp4
|
248.1 MB
|
10. Understanding the Learning Rate.vtt
|
32.1 KB
|
11. How to Create 3-Dimensional Charts.mp4
|
202.9 MB
|
11. How to Create 3-Dimensional Charts.vtt
|
23.4 KB
|
12. Understanding Partial Derivatives and How to use SymPy.mp4
|
139.3 MB
|
12. Understanding Partial Derivatives and How to use SymPy.vtt
|
17.8 KB
|
13. Implementing Batch Gradient Descent with SymPy.mp4
|
91.0 MB
|
13. Implementing Batch Gradient Descent with SymPy.vtt
|
11.5 KB
|
14. [Python] - Loops and Performance Considerations.mp4
|
137.4 MB
|
14. [Python] - Loops and Performance Considerations.vtt
|
15.9 KB
|
15. Reshaping and Slicing N-Dimensional Arrays.mp4
|
147.7 MB
|
15. Reshaping and Slicing N-Dimensional Arrays.vtt
|
19.9 KB
|
16. Concatenating Numpy Arrays.mp4
|
74.8 MB
|
16. Concatenating Numpy Arrays.vtt
|
7.8 KB
|
17. Introduction to the Mean Squared Error (MSE).mp4
|
67.7 MB
|
17. Introduction to the Mean Squared Error (MSE).vtt
|
11.1 KB
|
18. Transposing and Reshaping Arrays.mp4
|
91.1 MB
|
18. Transposing and Reshaping Arrays.vtt
|
12.1 KB
|
19. Implementing a MSE Cost Function.mp4
|
85.1 MB
|
19. Implementing a MSE Cost Function.vtt
|
11.9 KB
|
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4
|
76.7 MB
|
20. Understanding Nested Loops and Plotting the MSE Function (Part 1).vtt
|
12.2 KB
|
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4
|
130.9 MB
|
21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).vtt
|
15.7 KB
|
22. Running Gradient Descent with a MSE Cost Function.vtt
|
20.1 KB
|
23. Visualising the Optimisation on a 3D Surface.mp4
|
78.4 MB
|
23. Visualising the Optimisation on a 3D Surface.vtt
|
9.4 KB
|
24. Download the Complete Notebook Here.html
|
0.2 KB
|
24.1 03 Gradient Descent.ipynb.zip.zip
|
1.2 MB
|
/
|
udemycoursedownloader.com.url
|
0.1 KB
|
Udemy Course downloader.txt
|
0.1 KB
|
/01. Introduction to the Course/
|
1. What is Machine Learning.mp4
|
47.5 MB
|
1. What is Machine Learning.vtt
|
5.9 KB
|
2. What is Data Science.mp4
|
44.9 MB
|
2. What is Data Science.vtt
|
5.0 KB
|
3. Download the Syllabus.html
|
1.1 KB
|
3.1 ML Data Science Syllabus.pdf.pdf
|
106.5 KB
|
4. Top Tips for Succeeding on this Course.html
|
2.1 KB
|
4.1 App Brewery Cornell Notes Template.html
|
0.1 KB
|
5. Course Resources List.html
|
1.2 KB
|
/02. Predict Movie Box Office Revenue with Linear Regression/
|
1. Introduction to Linear Regression & Specifying the Problem.mp4
|
31.8 MB
|
1. Introduction to Linear Regression & Specifying the Problem.vtt
|
7.5 KB
|
1.1 Course Resources.html
|
0.1 KB
|
2. Gather & Clean the Data.mp4
|
101.7 MB
|
2. Gather & Clean the Data.vtt
|
12.0 KB
|
2.1 cost_revenue_dirty.csv.csv
|
383.7 KB
|
2.2 The-Numbers Movie Budgets.html
|
0.1 KB
|
3. Explore & Visualise the Data with Python.mp4
|
155.4 MB
|
3. Explore & Visualise the Data with Python.vtt
|
27.0 KB
|
3.1 cost_revenue_clean.csv.csv
|
93.0 KB
|
3.2 Try Jupyter in your Browser.html
|
0.1 KB
|
4. The Intuition behind the Linear Regression Model.mp4
|
31.1 MB
|
4. The Intuition behind the Linear Regression Model.vtt
|
9.4 KB
|
4.1 01 Linear Regression (checkpoint).ipynb.zip.zip
|
38.5 KB
|
5. Analyse and Evaluate the Results.mp4
|
110.3 MB
|
5. Analyse and Evaluate the Results.vtt
|
19.3 KB
|
6. Download the Complete Notebook Here.html
|
0.2 KB
|
6.1 01 Linear Regression (complete).ipynb.zip.zip
|
77.1 KB
|
7. Join the Student Community.html
|
0.7 KB
|
/03. Python Programming for Data Science and Machine Learning/
|
1. Windows Users - Install Anaconda.mp4
|
52.0 MB
|
1. Windows Users - Install Anaconda.vtt
|
7.6 KB
|
1.1 Course Resources.html
|
0.1 KB
|
2. Mac Users - Install Anaconda.mp4
|
55.0 MB
|
2. Mac Users - Install Anaconda.vtt
|
7.0 KB
|
2.1 Course Resources.html
|
0.1 KB
|
3. Does LSD Make You Better at Maths.mp4
|
44.3 MB
|
3. Does LSD Make You Better at Maths.vtt
|
6.4 KB
|
4. Download the 12 Rules to Learn to Code.html
|
1.2 KB
|
4.1 12 Rules to Learn to Code.pdf.pdf
|
2.4 MB
|
5. [Python] - Variables and Types.mp4
|
74.8 MB
|
5. [Python] - Variables and Types.vtt
|
14.5 KB
|
6. Python Variable Coding Exercise.html
|
0.1 KB
|
7. [Python] - Lists and Arrays.mp4
|
56.1 MB
|
7. [Python] - Lists and Arrays.mp4.jpg
|
60.4 KB
|
7. [Python] - Lists and Arrays.txt
|
0.2 KB
|
7. [Python] - Lists and Arrays.vtt
|
10.7 KB
|
8. Python Lists Coding Exercise.html
|
0.1 KB
|
9. [Python & Pandas] - Dataframes and Series.mp4
|
160.7 MB
|
9. [Python & Pandas] - Dataframes and Series.vtt
|
24.6 KB
|
9.1 lsd_math_score_data.csv.csv
|
0.2 KB
|
10. [Python] - Module Imports.mp4
|
243.4 MB
|
10. [Python] - Module Imports.vtt
|
31.1 KB
|
11. [Python] - Functions - Part 1 Defining and Calling Functions.mp4
|
43.6 MB
|
11. [Python] - Functions - Part 1 Defining and Calling Functions.vtt
|
9.1 KB
|
12. Python Functions Coding Exercise - Part 1.html
|
0.1 KB
|
13. [Python] - Functions - Part 2 Arguments & Parameters.mp4
|
134.4 MB
|
13. [Python] - Functions - Part 2 Arguments & Parameters.vtt
|
18.0 KB
|
14. Python Functions Coding Exercise - Part 2.html
|
0.1 KB
|
15. [Python] - Functions - Part 3 Results & Return Values.mp4
|
86.7 MB
|
15. [Python] - Functions - Part 3 Results & Return Values.vtt
|
14.4 KB
|
16. Python Functions Coding Exercise - Part 3.html
|
0.1 KB
|
17. [Python] - Objects - Understanding Attributes and Methods.mp4
|
164.4 MB
|
17. [Python] - Objects - Understanding Attributes and Methods.vtt
|
25.8 KB
|
18. How to Make Sense of Python Documentation for Data Visualisation.mp4
|
179.8 MB
|
18. How to Make Sense of Python Documentation for Data Visualisation.vtt
|
23.0 KB
|
19. Working with Python Objects to Analyse Data.vtt
|
23.5 KB
|
20. [Python] - Tips, Code Style and Naming Conventions.mp4
|
85.5 MB
|
20. [Python] - Tips, Code Style and Naming Conventions.vtt
|
14.5 KB
|
21. Download the Complete Notebook Here.html
|
0.2 KB
|
21.1 02 Python Intro.ipynb.zip.zip
|
37.3 KB
|
/05. Predict House Prices with Multivariable Linear Regression/
|
1. Defining the Problem.mp4
|
41.9 MB
|
1. Defining the Problem.vtt
|
5.6 KB
|
1.1 Course Resources.html
|
0.1 KB
|
2. Gathering the Boston House Price Data.vtt
|
7.5 KB
|
3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4
|
91.4 MB
|
3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.vtt
|
13.6 KB
|
4. Clean and Explore the Data (Part 2) Find Missing Values.mp4
|
141.6 MB
|
4. Clean and Explore the Data (Part 2) Find Missing Values.vtt
|
16.2 KB
|
5. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4
|
67.7 MB
|
5. Visualising Data (Part 1) Historams, Distributions & Outliers.vtt
|
12.3 KB
|
6. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4
|
60.1 MB
|
6. Visualising Data (Part 2) Seaborn and Probability Density Functions.vtt
|
7.9 KB
|
7. Working with Index Data, Pandas Series, and Dummy Variables.vtt
|
18.0 KB
|
8. Understanding Descriptive Statistics the Mean vs the Median.mp4
|
65.2 MB
|
8. Understanding Descriptive Statistics the Mean vs the Median.vtt
|
10.7 KB
|
9. Introduction to Correlation Understanding Strength & Direction.mp4
|
34.7 MB
|
9. Introduction to Correlation Understanding Strength & Direction.vtt
|
7.3 KB
|
10. Calculating Correlations and the Problem posed by Multicollinearity.mp4
|
116.9 MB
|
10. Calculating Correlations and the Problem posed by Multicollinearity.vtt
|
15.6 KB
|
11. Visualising Correlations with a Heatmap.mp4
|
176.8 MB
|
11. Visualising Correlations with a Heatmap.vtt
|
21.2 KB
|
12. Techniques to Style Scatter Plots.mp4
|
134.8 MB
|
12. Techniques to Style Scatter Plots.vtt
|
18.1 KB
|
13. A Note for the Next Lesson.html
|
0.5 KB
|
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4
|
224.8 MB
|
14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.vtt
|
25.0 KB
|
15. Understanding Multivariable Regression.mp4
|
51.2 MB
|
15. Understanding Multivariable Regression.vtt
|
6.5 KB
|
16. How to Shuffle and Split Training & Testing Data.mp4
|
67.5 MB
|
16. How to Shuffle and Split Training & Testing Data.vtt
|
10.3 KB
|
17. Running a Multivariable Regression.mp4
|
58.3 MB
|
17. Running a Multivariable Regression.vtt
|
8.6 KB
|
18. How to Calculate the Model Fit with R-Squared.mp4
|
34.0 MB
|
18. How to Calculate the Model Fit with R-Squared.vtt
|
3.9 KB
|
19. Introduction to Model Evaluation.mp4
|
16.8 MB
|
19. Introduction to Model Evaluation.vtt
|
3.3 KB
|
20. Improving the Model by Transforming the Data.mp4
|
133.0 MB
|
20. Improving the Model by Transforming the Data.vtt
|
19.1 KB
|
21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4
|
68.6 MB
|
21. How to Interpret Coefficients using p-Values and Statistical Significance.vtt
|
9.7 KB
|
22. Understanding VIF & Testing for Multicollinearity.mp4
|
150.8 MB
|
22. Understanding VIF & Testing for Multicollinearity.vtt
|
22.6 KB
|
23. Model Simiplication & Baysian Information Criterion.mp4
|
157.4 MB
|
23. Model Simiplication & Baysian Information Criterion.vtt
|
20.4 KB
|
24. How to Analyse and Plot Regression Residuals.mp4
|
67.3 MB
|
24. How to Analyse and Plot Regression Residuals.vtt
|
12.7 KB
|
25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4
|
130.5 MB
|
25. Residual Analysis (Part 1) Predicted vs Actual Values.vtt
|
15.8 KB
|
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4
|
160.4 MB
|
26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.vtt
|
19.5 KB
|
27. Making Predictions (Part 1) MSE & R-Squared.mp4
|
160.1 MB
|
27. Making Predictions (Part 1) MSE & R-Squared.vtt
|
20.5 KB
|
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4
|
89.0 MB
|
28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.vtt
|
13.0 KB
|
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4
|
137.7 MB
|
29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.vtt
|
18.4 KB
|
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4
|
140.9 MB
|
30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).vtt
|
18.9 KB
|
31. Python Conditional Statement Coding Exercise.html
|
0.1 KB
|
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4
|
256.0 MB
|
32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.vtt
|
25.1 KB
|
33. Download the Complete Notebook Here.html
|
0.2 KB
|
33.1 04 Multivariable Regression.ipynb.zip.zip
|
3.7 MB
|
33.2 04 Valuation Tool.ipynb.zip.zip
|
3.0 KB
|
/06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/
|
1. How to Translate a Business Problem into a Machine Learning Problem.mp4
|
44.3 MB
|
1. How to Translate a Business Problem into a Machine Learning Problem.vtt
|
8.4 KB
|
1.1 Course Resources.html
|
0.1 KB
|
2. Gathering Email Data and Working with Archives & Text Editors.mp4
|
117.5 MB
|
2. Gathering Email Data and Working with Archives & Text Editors.vtt
|
12.2 KB
|
2.1 SpamData.zip.zip
|
22.3 MB
|
3. How to Add the Lesson Resources to the Project.mp4
|
30.3 MB
|
3. How to Add the Lesson Resources to the Project.vtt
|
4.2 KB
|
4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4
|
35.0 MB
|
4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.vtt
|
5.3 KB
|
5. Basic Probability.mp4
|
29.9 MB
|
5. Basic Probability.vtt
|
4.6 KB
|
6. Joint & Conditional Probability.mp4
|
148.7 MB
|
6. Joint & Conditional Probability.vtt
|
17.2 KB
|
7. Bayes Theorem.mp4
|
87.2 MB
|
7. Bayes Theorem.vtt
|
13.1 KB
|
8. Reading Files (Part 1) Absolute Paths and Relative Paths.mp4
|
63.9 MB
|
8. Reading Files (Part 1) Absolute Paths and Relative Paths.vtt
|
10.3 KB
|
9. Reading Files (Part 2) Stream Objects and Email Structure.mp4
|
109.4 MB
|
9. Reading Files (Part 2) Stream Objects and Email Structure.vtt
|
12.7 KB
|
10. Extracting the Text in the Email Body.mp4
|
49.7 MB
|
10. Extracting the Text in the Email Body.vtt
|
5.3 KB
|
11. [Python] - Generator Functions & the yield Keyword.mp4
|
139.6 MB
|
11. [Python] - Generator Functions & the yield Keyword.vtt
|
19.8 KB
|
12. Create a Pandas DataFrame of Email Bodies.mp4
|
51.0 MB
|
12. Create a Pandas DataFrame of Email Bodies.vtt
|
6.4 KB
|
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4
|
127.9 MB
|
13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.vtt
|
15.7 KB
|
14. Cleaning Data (Part 2) Working with a DataFrame Index.mp4
|
64.8 MB
|
14. Cleaning Data (Part 2) Working with a DataFrame Index.vtt
|
8.3 KB
|
15. Saving a JSON File with Pandas.mp4
|
59.1 MB
|
15. Saving a JSON File with Pandas.vtt
|
6.2 KB
|
16. Data Visualisation (Part 1) Pie Charts.mp4
|
95.1 MB
|
16. Data Visualisation (Part 1) Pie Charts.vtt
|
14.2 KB
|
17. Data Visualisation (Part 2) Donut Charts.mp4
|
64.8 MB
|
17. Data Visualisation (Part 2) Donut Charts.vtt
|
8.3 KB
|
18. Introduction to Natural Language Processing (NLP).mp4
|
53.3 MB
|
18. Introduction to Natural Language Processing (NLP).vtt
|
7.2 KB
|
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4
|
123.5 MB
|
19. Tokenizing, Removing Stop Words and the Python Set Data Structure.vtt
|
16.4 KB
|
20. Word Stemming & Removing Punctuation.mp4
|
74.9 MB
|
20. Word Stemming & Removing Punctuation.vtt
|
9.2 KB
|
21. Removing HTML tags with BeautifulSoup.mp4
|
100.5 MB
|
21. Removing HTML tags with BeautifulSoup.vtt
|
9.7 KB
|
22. Creating a Function for Text Processing.mp4
|
56.5 MB
|
23. A Note for the Next Lesson.html
|
0.5 KB
|
24. Advanced Subsetting on DataFrames the apply() Function.mp4
|
87.4 MB
|
24. Advanced Subsetting on DataFrames the apply() Function.vtt
|
11.9 KB
|
25. [Python] - Logical Operators to Create Subsets and Indices.mp4
|
90.6 MB
|
26. Word Clouds & How to install Additional Python Packages.mp4
|
83.4 MB
|
26. Word Clouds & How to install Additional Python Packages.vtt
|
10.4 KB
|
27. Creating your First Word Cloud.mp4
|
103.2 MB
|
27. Creating your First Word Cloud.vtt
|
12.2 KB
|
28. Styling the Word Cloud with a Mask.mp4
|
137.8 MB
|
28. Styling the Word Cloud with a Mask.vtt
|
14.6 KB
|
29. Solving the Hamlet Challenge.mp4
|
59.9 MB
|
29. Solving the Hamlet Challenge.vtt
|
5.4 KB
|
30. Styling Word Clouds with Custom Fonts.mp4
|
133.5 MB
|
30. Styling Word Clouds with Custom Fonts.vtt
|
12.9 KB
|
31. Create the Vocabulary for the Spam Classifier.vtt
|
15.7 KB
|
32. Coding Challenge Check for Membership in a Collection.mp4
|
33.9 MB
|
32. Coding Challenge Check for Membership in a Collection.vtt
|
5.2 KB
|
33. Coding Challenge Find the Longest Email.mp4
|
57.1 MB
|
33. Coding Challenge Find the Longest Email.vtt
|
6.7 KB
|
34. Sparse Matrix (Part 1) Split the Training and Testing Data.mp4
|
91.9 MB
|
34. Sparse Matrix (Part 1) Split the Training and Testing Data.vtt
|
13.8 KB
|
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4
|
143.9 MB
|
35. Sparse Matrix (Part 2) Data Munging with Nested Loops.vtt
|
20.3 KB
|
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4
|
84.4 MB
|
36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.vtt
|
10.9 KB
|
37. Coding Challenge Solution Preparing the Test Data.mp4
|
30.3 MB
|
37. Coding Challenge Solution Preparing the Test Data.vtt
|
4.4 KB
|
38. Checkpoint Understanding the Data.mp4
|
101.1 MB
|
38. Checkpoint Understanding the Data.vtt
|
12.3 KB
|
39. Download the Complete Notebook Here.html
|
0.2 KB
|
39.1 06 Bayes Classifier - Pre-Processing.ipynb.zip.zip
|
1.0 MB
|
/07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/
|
1. Setting up the Notebook and Understanding Delimiters in a Dataset.mp4
|
76.0 MB
|
1. Setting up the Notebook and Understanding Delimiters in a Dataset.vtt
|
10.0 KB
|
1.1 SpamData.zip.zip
|
23.4 MB
|
1.2 Course Resources.html
|
0.1 KB
|
2. Create a Full Matrix.mp4
|
138.7 MB
|
2. Create a Full Matrix.vtt
|
19.3 KB
|
3. Count the Tokens to Train the Naive Bayes Model.mp4
|
100.9 MB
|
3. Count the Tokens to Train the Naive Bayes Model.vtt
|
16.4 KB
|
4. Sum the Tokens across the Spam and Ham Subsets.mp4
|
49.0 MB
|
4. Sum the Tokens across the Spam and Ham Subsets.vtt
|
7.1 KB
|
5. Calculate the Token Probabilities and Save the Trained Model.mp4
|
56.1 MB
|
5. Calculate the Token Probabilities and Save the Trained Model.vtt
|
8.4 KB
|
6. Coding Challenge Prepare the Test Data.mp4
|
37.3 MB
|
6. Coding Challenge Prepare the Test Data.vtt
|
4.6 KB
|
7. Download the Complete Notebook Here.html
|
0.2 KB
|
7.1 07 Bayes Classifier - Training.ipynb.zip.zip
|
6.0 KB
|
/08. Test and Evaluate a Naive Bayes Classifier Part 3/
|
1. Set up the Testing Notebook.mp4
|
27.7 MB
|
1. Set up the Testing Notebook.vtt
|
3.4 KB
|
1.1 Course Resources.html
|
0.1 KB
|
1.2 SpamData.zip.zip
|
23.9 MB
|
2. Joint Conditional Probability (Part 1) Dot Product.mp4
|
69.6 MB
|
2. Joint Conditional Probability (Part 1) Dot Product.vtt
|
11.4 KB
|
3. Joint Conditional Probablity (Part 2) Priors.mp4
|
67.1 MB
|
3. Joint Conditional Probablity (Part 2) Priors.vtt
|
9.6 KB
|
4. Making Predictions Comparing Joint Probabilities.mp4
|
54.9 MB
|
4. Making Predictions Comparing Joint Probabilities.vtt
|
8.7 KB
|
5. The Accuracy Metric.mp4
|
42.5 MB
|
5. The Accuracy Metric.vtt
|
6.9 KB
|
6. Visualising the Decision Boundary.mp4
|
215.3 MB
|
6. Visualising the Decision Boundary.vtt
|
29.9 KB
|
7. False Positive vs False Negatives.mp4
|
66.3 MB
|
7. False Positive vs False Negatives.vtt
|
11.5 KB
|
8. The Recall Metric.mp4
|
29.5 MB
|
8. The Recall Metric.vtt
|
5.9 KB
|
9. The Precision Metric.mp4
|
55.9 MB
|
9. The Precision Metric.vtt
|
8.5 KB
|
10. The F-score or F1 Metric.mp4
|
25.9 MB
|
10. The F-score or F1 Metric.vtt
|
4.1 KB
|
11. A Naive Bayes Implementation using SciKit Learn.mp4
|
204.6 MB
|
11. A Naive Bayes Implementation using SciKit Learn.vtt
|
29.9 KB
|
12. Download the Complete Notebook Here.html
|
0.2 KB
|
12.1 08 Naive Bayes with scikit-learn.ipynb.zip.zip
|
13.6 KB
|
12.2 07 Bayes Classifier - Testing, Inference & Evaluation.ipynb.zip.zip
|
248.9 KB
|
/09. Introduction to Neural Networks and How to Use Pre-Trained Models/
|
1. The Human Brain and the Inspiration for Artificial Neural Networks.mp4
|
54.3 MB
|
1. The Human Brain and the Inspiration for Artificial Neural Networks.vtt
|
9.8 KB
|
1.1 Course Resources.html
|
0.1 KB
|
2. Layers, Feature Generation and Learning.mp4
|
153.8 MB
|
2. Layers, Feature Generation and Learning.vtt
|
24.8 KB
|
3. Costs and Disadvantages of Neural Networks.mp4
|
96.5 MB
|
3. Costs and Disadvantages of Neural Networks.vtt
|
17.2 KB
|
4. Preprocessing Image Data and How RGB Works.mp4
|
98.2 MB
|
4. Preprocessing Image Data and How RGB Works.vtt
|
14.5 KB
|
4.1 TF_Keras_Classification_Images.zip.zip
|
513.1 KB
|
5. Importing Keras Models and the Tensorflow Graph.mp4
|
68.6 MB
|
5. Importing Keras Models and the Tensorflow Graph.vtt
|
10.4 KB
|
6. Making Predictions using InceptionResNet.mp4
|
141.1 MB
|
6. Making Predictions using InceptionResNet.vtt
|
16.9 KB
|
7. Coding Challenge Solution Using other Keras Models.mp4
|
108.6 MB
|
7. Coding Challenge Solution Using other Keras Models.vtt
|
11.7 KB
|
8. Download the Complete Notebook Here.html
|
0.3 KB
|
8.1 09 Neural Nets Pretrained Image Classification.ipynb.zip.zip
|
585.6 KB
|
/10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/
|
1. Solving a Business Problem with Image Classification.mp4
|
32.0 MB
|
1. Solving a Business Problem with Image Classification.vtt
|
4.5 KB
|
1.1 Course Resources.html
|
0.1 KB
|
2. Installing Tensorflow and Keras for Jupyter.mp4
|
44.1 MB
|
2. Installing Tensorflow and Keras for Jupyter.vtt
|
5.9 KB
|
3. Gathering the CIFAR 10 Dataset.mp4
|
32.9 MB
|
3. Gathering the CIFAR 10 Dataset.vtt
|
5.5 KB
|
4. Exploring the CIFAR Data.mp4
|
115.7 MB
|
4. Exploring the CIFAR Data.vtt
|
16.2 KB
|
5. Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4
|
97.7 MB
|
5. Pre-processing Scaling Inputs and Creating a Validation Dataset.vtt
|
17.8 KB
|
6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4
|
108.6 MB
|
6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.vtt
|
16.7 KB
|
7. Interacting with the Operating System and the Python Try-Catch Block.mp4
|
139.9 MB
|
7. Interacting with the Operating System and the Python Try-Catch Block.vtt
|
21.3 KB
|
8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4
|
105.3 MB
|
8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.vtt
|
12.7 KB
|
9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4
|
200.8 MB
|
9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.vtt
|
25.2 KB
|
10. Use the Model to Make Predictions.vtt
|
29.6 KB
|
11. Model Evaluation and the Confusion Matrix.mp4
|
65.8 MB
|
11. Model Evaluation and the Confusion Matrix.vtt
|
9.6 KB
|
12. Model Evaluation and the Confusion Matrix.mp4
|
264.1 MB
|
12. Model Evaluation and the Confusion Matrix.vtt
|
36.0 KB
|
13. Download the Complete Notebook Here.html
|
0.2 KB
|
13.1 10 Neural Nets - Keras CIFAR10 Classification.ipynb.zip.zip
|
123.0 KB
|
/11. Use Tensorflow to Classify Handwritten Digits/
|
1. What's coming up.mp4
|
7.4 MB
|
1. What's coming up.vtt
|
2.3 KB
|
1.1 Course Resources.html
|
0.1 KB
|
2. Getting the Data and Loading it into Numpy Arrays.mp4
|
55.4 MB
|
2. Getting the Data and Loading it into Numpy Arrays.vtt
|
8.1 KB
|
2.1 MNIST.zip.zip
|
15.5 MB
|
3. Data Exploration and Understanding the Structure of the Input Data.mp4
|
34.0 MB
|
3. Data Exploration and Understanding the Structure of the Input Data.vtt
|
5.9 KB
|
4. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.vtt
|
11.4 KB
|
5. What is a Tensor.mp4
|
47.6 MB
|
5. What is a Tensor.vtt
|
8.1 KB
|
6. Creating Tensors and Setting up the Neural Network Architecture.mp4
|
158.2 MB
|
6. Creating Tensors and Setting up the Neural Network Architecture.vtt
|
26.0 KB
|
7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4
|
78.8 MB
|
7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.vtt
|
12.7 KB
|
8. TensorFlow Sessions and Batching Data.mp4
|
105.2 MB
|
8. TensorFlow Sessions and Batching Data.vtt
|
18.3 KB
|
9. Tensorboard Summaries and the Filewriter.mp4
|
134.5 MB
|
9. Tensorboard Summaries and the Filewriter.vtt
|
20.8 KB
|
10. Understanding the Tensorflow Graph Nodes and Edges.mp4
|
121.4 MB
|
10. Understanding the Tensorflow Graph Nodes and Edges.vtt
|
19.0 KB
|
11. Name Scoping and Image Visualisation in Tensorboard.mp4
|
162.9 MB
|
11. Name Scoping and Image Visualisation in Tensorboard.vtt
|
23.5 KB
|
12. Different Model Architectures Experimenting with Dropout.mp4
|
224.1 MB
|
12. Different Model Architectures Experimenting with Dropout.vtt
|
26.9 KB
|
13. Prediction and Model Evaluation.mp4
|
116.1 MB
|
13. Prediction and Model Evaluation.vtt
|
16.9 KB
|
14. Download the Complete Notebook Here.html
|
0.2 KB
|
14.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip.zip
|
6.8 KB
|
/12. Next Steps/
|
1. Where next.html
|
4.0 KB
|
2. What Modules Do You Want to See.html
|
0.4 KB
|
3. Stay in Touch!.html
|
1.1 KB
|
Total files 377
|