FileMood

Download [UdemyCourseDownloader] Complete Data Science & Machine Learning Bootcamp – Python 3

UdemyCourseDownloader Complete Data Science Machine Learning Bootcamp Python

Name

[UdemyCourseDownloader] Complete Data Science & Machine Learning Bootcamp – Python 3

 DOWNLOAD Copy Link

Total Size

15.2 GB

Total Files

377

Hash

D432C60E9D1DC749517171C7D3D3392D0E7E754F

/04. Introduction to Optimisation and the Gradient Descent Algorithm/

8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4

305.5 MB

1. What's Coming Up.mp4

22.0 MB

1. What's Coming Up.vtt

3.3 KB

1.1 Course Resources.html

0.1 KB

2. How a Machine Learns.mp4

23.9 MB

2. How a Machine Learns.vtt

6.2 KB

3. Introduction to Cost Functions.mp4

69.4 MB

3. Introduction to Cost Functions.vtt

8.1 KB

4. LaTeX Markdown and Generating Data with Numpy.mp4

94.9 MB

4. LaTeX Markdown and Generating Data with Numpy.vtt

15.1 KB

5. Understanding the Power Rule & Creating Charts with Subplots.mp4

94.5 MB

5. Understanding the Power Rule & Creating Charts with Subplots.vtt

15.6 KB

6. [Python] - Loops and the Gradient Descent Algorithm.mp4

301.4 MB

6. [Python] - Loops and the Gradient Descent Algorithm.vtt

36.7 KB

7. Python Loops Coding Exercise.html

0.1 KB

8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).vtt

37.3 KB

9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4

229.7 MB

9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).vtt

29.2 KB

10. Understanding the Learning Rate.mp4

248.1 MB

10. Understanding the Learning Rate.vtt

32.1 KB

11. How to Create 3-Dimensional Charts.mp4

202.9 MB

11. How to Create 3-Dimensional Charts.vtt

23.4 KB

12. Understanding Partial Derivatives and How to use SymPy.mp4

139.3 MB

12. Understanding Partial Derivatives and How to use SymPy.vtt

17.8 KB

13. Implementing Batch Gradient Descent with SymPy.mp4

91.0 MB

13. Implementing Batch Gradient Descent with SymPy.vtt

11.5 KB

14. [Python] - Loops and Performance Considerations.mp4

137.4 MB

14. [Python] - Loops and Performance Considerations.vtt

15.9 KB

15. Reshaping and Slicing N-Dimensional Arrays.mp4

147.7 MB

15. Reshaping and Slicing N-Dimensional Arrays.vtt

19.9 KB

16. Concatenating Numpy Arrays.mp4

74.8 MB

16. Concatenating Numpy Arrays.vtt

7.8 KB

17. Introduction to the Mean Squared Error (MSE).mp4

67.7 MB

17. Introduction to the Mean Squared Error (MSE).vtt

11.1 KB

18. Transposing and Reshaping Arrays.mp4

91.1 MB

18. Transposing and Reshaping Arrays.vtt

12.1 KB

19. Implementing a MSE Cost Function.mp4

85.1 MB

19. Implementing a MSE Cost Function.vtt

11.9 KB

20. Understanding Nested Loops and Plotting the MSE Function (Part 1).mp4

76.7 MB

20. Understanding Nested Loops and Plotting the MSE Function (Part 1).vtt

12.2 KB

21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4

130.9 MB

21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).vtt

15.7 KB

22. Running Gradient Descent with a MSE Cost Function.vtt

20.1 KB

23. Visualising the Optimisation on a 3D Surface.mp4

78.4 MB

23. Visualising the Optimisation on a 3D Surface.vtt

9.4 KB

24. Download the Complete Notebook Here.html

0.2 KB

24.1 03 Gradient Descent.ipynb.zip.zip

1.2 MB

/

udemycoursedownloader.com.url

0.1 KB

Udemy Course downloader.txt

0.1 KB

/01. Introduction to the Course/

1. What is Machine Learning.mp4

47.5 MB

1. What is Machine Learning.vtt

5.9 KB

2. What is Data Science.mp4

44.9 MB

2. What is Data Science.vtt

5.0 KB

3. Download the Syllabus.html

1.1 KB

3.1 ML Data Science Syllabus.pdf.pdf

106.5 KB

4. Top Tips for Succeeding on this Course.html

2.1 KB

4.1 App Brewery Cornell Notes Template.html

0.1 KB

5. Course Resources List.html

1.2 KB

/02. Predict Movie Box Office Revenue with Linear Regression/

1. Introduction to Linear Regression & Specifying the Problem.mp4

31.8 MB

1. Introduction to Linear Regression & Specifying the Problem.vtt

7.5 KB

1.1 Course Resources.html

0.1 KB

2. Gather & Clean the Data.mp4

101.7 MB

2. Gather & Clean the Data.vtt

12.0 KB

2.1 cost_revenue_dirty.csv.csv

383.7 KB

2.2 The-Numbers Movie Budgets.html

0.1 KB

3. Explore & Visualise the Data with Python.mp4

155.4 MB

3. Explore & Visualise the Data with Python.vtt

27.0 KB

3.1 cost_revenue_clean.csv.csv

93.0 KB

3.2 Try Jupyter in your Browser.html

0.1 KB

4. The Intuition behind the Linear Regression Model.mp4

31.1 MB

4. The Intuition behind the Linear Regression Model.vtt

9.4 KB

4.1 01 Linear Regression (checkpoint).ipynb.zip.zip

38.5 KB

5. Analyse and Evaluate the Results.mp4

110.3 MB

5. Analyse and Evaluate the Results.vtt

19.3 KB

6. Download the Complete Notebook Here.html

0.2 KB

6.1 01 Linear Regression (complete).ipynb.zip.zip

77.1 KB

7. Join the Student Community.html

0.7 KB

/03. Python Programming for Data Science and Machine Learning/

1. Windows Users - Install Anaconda.mp4

52.0 MB

1. Windows Users - Install Anaconda.vtt

7.6 KB

1.1 Course Resources.html

0.1 KB

2. Mac Users - Install Anaconda.mp4

55.0 MB

2. Mac Users - Install Anaconda.vtt

7.0 KB

2.1 Course Resources.html

0.1 KB

3. Does LSD Make You Better at Maths.mp4

44.3 MB

3. Does LSD Make You Better at Maths.vtt

6.4 KB

4. Download the 12 Rules to Learn to Code.html

1.2 KB

4.1 12 Rules to Learn to Code.pdf.pdf

2.4 MB

5. [Python] - Variables and Types.mp4

74.8 MB

5. [Python] - Variables and Types.vtt

14.5 KB

6. Python Variable Coding Exercise.html

0.1 KB

7. [Python] - Lists and Arrays.mp4

56.1 MB

7. [Python] - Lists and Arrays.mp4.jpg

60.4 KB

7. [Python] - Lists and Arrays.txt

0.2 KB

7. [Python] - Lists and Arrays.vtt

10.7 KB

8. Python Lists Coding Exercise.html

0.1 KB

9. [Python & Pandas] - Dataframes and Series.mp4

160.7 MB

9. [Python & Pandas] - Dataframes and Series.vtt

24.6 KB

9.1 lsd_math_score_data.csv.csv

0.2 KB

10. [Python] - Module Imports.mp4

243.4 MB

10. [Python] - Module Imports.vtt

31.1 KB

11. [Python] - Functions - Part 1 Defining and Calling Functions.mp4

43.6 MB

11. [Python] - Functions - Part 1 Defining and Calling Functions.vtt

9.1 KB

12. Python Functions Coding Exercise - Part 1.html

0.1 KB

13. [Python] - Functions - Part 2 Arguments & Parameters.mp4

134.4 MB

13. [Python] - Functions - Part 2 Arguments & Parameters.vtt

18.0 KB

14. Python Functions Coding Exercise - Part 2.html

0.1 KB

15. [Python] - Functions - Part 3 Results & Return Values.mp4

86.7 MB

15. [Python] - Functions - Part 3 Results & Return Values.vtt

14.4 KB

16. Python Functions Coding Exercise - Part 3.html

0.1 KB

17. [Python] - Objects - Understanding Attributes and Methods.mp4

164.4 MB

17. [Python] - Objects - Understanding Attributes and Methods.vtt

25.8 KB

18. How to Make Sense of Python Documentation for Data Visualisation.mp4

179.8 MB

18. How to Make Sense of Python Documentation for Data Visualisation.vtt

23.0 KB

19. Working with Python Objects to Analyse Data.vtt

23.5 KB

20. [Python] - Tips, Code Style and Naming Conventions.mp4

85.5 MB

20. [Python] - Tips, Code Style and Naming Conventions.vtt

14.5 KB

21. Download the Complete Notebook Here.html

0.2 KB

21.1 02 Python Intro.ipynb.zip.zip

37.3 KB

/05. Predict House Prices with Multivariable Linear Regression/

1. Defining the Problem.mp4

41.9 MB

1. Defining the Problem.vtt

5.6 KB

1.1 Course Resources.html

0.1 KB

2. Gathering the Boston House Price Data.vtt

7.5 KB

3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.mp4

91.4 MB

3. Clean and Explore the Data (Part 1) Understand the Nature of the Dataset.vtt

13.6 KB

4. Clean and Explore the Data (Part 2) Find Missing Values.mp4

141.6 MB

4. Clean and Explore the Data (Part 2) Find Missing Values.vtt

16.2 KB

5. Visualising Data (Part 1) Historams, Distributions & Outliers.mp4

67.7 MB

5. Visualising Data (Part 1) Historams, Distributions & Outliers.vtt

12.3 KB

6. Visualising Data (Part 2) Seaborn and Probability Density Functions.mp4

60.1 MB

6. Visualising Data (Part 2) Seaborn and Probability Density Functions.vtt

7.9 KB

7. Working with Index Data, Pandas Series, and Dummy Variables.vtt

18.0 KB

8. Understanding Descriptive Statistics the Mean vs the Median.mp4

65.2 MB

8. Understanding Descriptive Statistics the Mean vs the Median.vtt

10.7 KB

9. Introduction to Correlation Understanding Strength & Direction.mp4

34.7 MB

9. Introduction to Correlation Understanding Strength & Direction.vtt

7.3 KB

10. Calculating Correlations and the Problem posed by Multicollinearity.mp4

116.9 MB

10. Calculating Correlations and the Problem posed by Multicollinearity.vtt

15.6 KB

11. Visualising Correlations with a Heatmap.mp4

176.8 MB

11. Visualising Correlations with a Heatmap.vtt

21.2 KB

12. Techniques to Style Scatter Plots.mp4

134.8 MB

12. Techniques to Style Scatter Plots.vtt

18.1 KB

13. A Note for the Next Lesson.html

0.5 KB

14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4

224.8 MB

14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.vtt

25.0 KB

15. Understanding Multivariable Regression.mp4

51.2 MB

15. Understanding Multivariable Regression.vtt

6.5 KB

16. How to Shuffle and Split Training & Testing Data.mp4

67.5 MB

16. How to Shuffle and Split Training & Testing Data.vtt

10.3 KB

17. Running a Multivariable Regression.mp4

58.3 MB

17. Running a Multivariable Regression.vtt

8.6 KB

18. How to Calculate the Model Fit with R-Squared.mp4

34.0 MB

18. How to Calculate the Model Fit with R-Squared.vtt

3.9 KB

19. Introduction to Model Evaluation.mp4

16.8 MB

19. Introduction to Model Evaluation.vtt

3.3 KB

20. Improving the Model by Transforming the Data.mp4

133.0 MB

20. Improving the Model by Transforming the Data.vtt

19.1 KB

21. How to Interpret Coefficients using p-Values and Statistical Significance.mp4

68.6 MB

21. How to Interpret Coefficients using p-Values and Statistical Significance.vtt

9.7 KB

22. Understanding VIF & Testing for Multicollinearity.mp4

150.8 MB

22. Understanding VIF & Testing for Multicollinearity.vtt

22.6 KB

23. Model Simiplication & Baysian Information Criterion.mp4

157.4 MB

23. Model Simiplication & Baysian Information Criterion.vtt

20.4 KB

24. How to Analyse and Plot Regression Residuals.mp4

67.3 MB

24. How to Analyse and Plot Regression Residuals.vtt

12.7 KB

25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4

130.5 MB

25. Residual Analysis (Part 1) Predicted vs Actual Values.vtt

15.8 KB

26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4

160.4 MB

26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.vtt

19.5 KB

27. Making Predictions (Part 1) MSE & R-Squared.mp4

160.1 MB

27. Making Predictions (Part 1) MSE & R-Squared.vtt

20.5 KB

28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.mp4

89.0 MB

28. Making Predictions (Part 2) Standard Deviation, RMSE, and Prediction Intervals.vtt

13.0 KB

29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4

137.7 MB

29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.vtt

18.4 KB

30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4

140.9 MB

30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).vtt

18.9 KB

31. Python Conditional Statement Coding Exercise.html

0.1 KB

32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4

256.0 MB

32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.vtt

25.1 KB

33. Download the Complete Notebook Here.html

0.2 KB

33.1 04 Multivariable Regression.ipynb.zip.zip

3.7 MB

33.2 04 Valuation Tool.ipynb.zip.zip

3.0 KB

/06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/

1. How to Translate a Business Problem into a Machine Learning Problem.mp4

44.3 MB

1. How to Translate a Business Problem into a Machine Learning Problem.vtt

8.4 KB

1.1 Course Resources.html

0.1 KB

2. Gathering Email Data and Working with Archives & Text Editors.mp4

117.5 MB

2. Gathering Email Data and Working with Archives & Text Editors.vtt

12.2 KB

2.1 SpamData.zip.zip

22.3 MB

3. How to Add the Lesson Resources to the Project.mp4

30.3 MB

3. How to Add the Lesson Resources to the Project.vtt

4.2 KB

4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.mp4

35.0 MB

4. The Naive Bayes Algorithm and the Decision Boundary for a Classifier.vtt

5.3 KB

5. Basic Probability.mp4

29.9 MB

5. Basic Probability.vtt

4.6 KB

6. Joint & Conditional Probability.mp4

148.7 MB

6. Joint & Conditional Probability.vtt

17.2 KB

7. Bayes Theorem.mp4

87.2 MB

7. Bayes Theorem.vtt

13.1 KB

8. Reading Files (Part 1) Absolute Paths and Relative Paths.mp4

63.9 MB

8. Reading Files (Part 1) Absolute Paths and Relative Paths.vtt

10.3 KB

9. Reading Files (Part 2) Stream Objects and Email Structure.mp4

109.4 MB

9. Reading Files (Part 2) Stream Objects and Email Structure.vtt

12.7 KB

10. Extracting the Text in the Email Body.mp4

49.7 MB

10. Extracting the Text in the Email Body.vtt

5.3 KB

11. [Python] - Generator Functions & the yield Keyword.mp4

139.6 MB

11. [Python] - Generator Functions & the yield Keyword.vtt

19.8 KB

12. Create a Pandas DataFrame of Email Bodies.mp4

51.0 MB

12. Create a Pandas DataFrame of Email Bodies.vtt

6.4 KB

13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4

127.9 MB

13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.vtt

15.7 KB

14. Cleaning Data (Part 2) Working with a DataFrame Index.mp4

64.8 MB

14. Cleaning Data (Part 2) Working with a DataFrame Index.vtt

8.3 KB

15. Saving a JSON File with Pandas.mp4

59.1 MB

15. Saving a JSON File with Pandas.vtt

6.2 KB

16. Data Visualisation (Part 1) Pie Charts.mp4

95.1 MB

16. Data Visualisation (Part 1) Pie Charts.vtt

14.2 KB

17. Data Visualisation (Part 2) Donut Charts.mp4

64.8 MB

17. Data Visualisation (Part 2) Donut Charts.vtt

8.3 KB

18. Introduction to Natural Language Processing (NLP).mp4

53.3 MB

18. Introduction to Natural Language Processing (NLP).vtt

7.2 KB

19. Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4

123.5 MB

19. Tokenizing, Removing Stop Words and the Python Set Data Structure.vtt

16.4 KB

20. Word Stemming & Removing Punctuation.mp4

74.9 MB

20. Word Stemming & Removing Punctuation.vtt

9.2 KB

21. Removing HTML tags with BeautifulSoup.mp4

100.5 MB

21. Removing HTML tags with BeautifulSoup.vtt

9.7 KB

22. Creating a Function for Text Processing.mp4

56.5 MB

23. A Note for the Next Lesson.html

0.5 KB

24. Advanced Subsetting on DataFrames the apply() Function.mp4

87.4 MB

24. Advanced Subsetting on DataFrames the apply() Function.vtt

11.9 KB

25. [Python] - Logical Operators to Create Subsets and Indices.mp4

90.6 MB

26. Word Clouds & How to install Additional Python Packages.mp4

83.4 MB

26. Word Clouds & How to install Additional Python Packages.vtt

10.4 KB

27. Creating your First Word Cloud.mp4

103.2 MB

27. Creating your First Word Cloud.vtt

12.2 KB

28. Styling the Word Cloud with a Mask.mp4

137.8 MB

28. Styling the Word Cloud with a Mask.vtt

14.6 KB

29. Solving the Hamlet Challenge.mp4

59.9 MB

29. Solving the Hamlet Challenge.vtt

5.4 KB

30. Styling Word Clouds with Custom Fonts.mp4

133.5 MB

30. Styling Word Clouds with Custom Fonts.vtt

12.9 KB

31. Create the Vocabulary for the Spam Classifier.vtt

15.7 KB

32. Coding Challenge Check for Membership in a Collection.mp4

33.9 MB

32. Coding Challenge Check for Membership in a Collection.vtt

5.2 KB

33. Coding Challenge Find the Longest Email.mp4

57.1 MB

33. Coding Challenge Find the Longest Email.vtt

6.7 KB

34. Sparse Matrix (Part 1) Split the Training and Testing Data.mp4

91.9 MB

34. Sparse Matrix (Part 1) Split the Training and Testing Data.vtt

13.8 KB

35. Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4

143.9 MB

35. Sparse Matrix (Part 2) Data Munging with Nested Loops.vtt

20.3 KB

36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.mp4

84.4 MB

36. Sparse Matrix (Part 3) Using groupby() and Saving .txt Files.vtt

10.9 KB

37. Coding Challenge Solution Preparing the Test Data.mp4

30.3 MB

37. Coding Challenge Solution Preparing the Test Data.vtt

4.4 KB

38. Checkpoint Understanding the Data.mp4

101.1 MB

38. Checkpoint Understanding the Data.vtt

12.3 KB

39. Download the Complete Notebook Here.html

0.2 KB

39.1 06 Bayes Classifier - Pre-Processing.ipynb.zip.zip

1.0 MB

/07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/

1. Setting up the Notebook and Understanding Delimiters in a Dataset.mp4

76.0 MB

1. Setting up the Notebook and Understanding Delimiters in a Dataset.vtt

10.0 KB

1.1 SpamData.zip.zip

23.4 MB

1.2 Course Resources.html

0.1 KB

2. Create a Full Matrix.mp4

138.7 MB

2. Create a Full Matrix.vtt

19.3 KB

3. Count the Tokens to Train the Naive Bayes Model.mp4

100.9 MB

3. Count the Tokens to Train the Naive Bayes Model.vtt

16.4 KB

4. Sum the Tokens across the Spam and Ham Subsets.mp4

49.0 MB

4. Sum the Tokens across the Spam and Ham Subsets.vtt

7.1 KB

5. Calculate the Token Probabilities and Save the Trained Model.mp4

56.1 MB

5. Calculate the Token Probabilities and Save the Trained Model.vtt

8.4 KB

6. Coding Challenge Prepare the Test Data.mp4

37.3 MB

6. Coding Challenge Prepare the Test Data.vtt

4.6 KB

7. Download the Complete Notebook Here.html

0.2 KB

7.1 07 Bayes Classifier - Training.ipynb.zip.zip

6.0 KB

/08. Test and Evaluate a Naive Bayes Classifier Part 3/

1. Set up the Testing Notebook.mp4

27.7 MB

1. Set up the Testing Notebook.vtt

3.4 KB

1.1 Course Resources.html

0.1 KB

1.2 SpamData.zip.zip

23.9 MB

2. Joint Conditional Probability (Part 1) Dot Product.mp4

69.6 MB

2. Joint Conditional Probability (Part 1) Dot Product.vtt

11.4 KB

3. Joint Conditional Probablity (Part 2) Priors.mp4

67.1 MB

3. Joint Conditional Probablity (Part 2) Priors.vtt

9.6 KB

4. Making Predictions Comparing Joint Probabilities.mp4

54.9 MB

4. Making Predictions Comparing Joint Probabilities.vtt

8.7 KB

5. The Accuracy Metric.mp4

42.5 MB

5. The Accuracy Metric.vtt

6.9 KB

6. Visualising the Decision Boundary.mp4

215.3 MB

6. Visualising the Decision Boundary.vtt

29.9 KB

7. False Positive vs False Negatives.mp4

66.3 MB

7. False Positive vs False Negatives.vtt

11.5 KB

8. The Recall Metric.mp4

29.5 MB

8. The Recall Metric.vtt

5.9 KB

9. The Precision Metric.mp4

55.9 MB

9. The Precision Metric.vtt

8.5 KB

10. The F-score or F1 Metric.mp4

25.9 MB

10. The F-score or F1 Metric.vtt

4.1 KB

11. A Naive Bayes Implementation using SciKit Learn.mp4

204.6 MB

11. A Naive Bayes Implementation using SciKit Learn.vtt

29.9 KB

12. Download the Complete Notebook Here.html

0.2 KB

12.1 08 Naive Bayes with scikit-learn.ipynb.zip.zip

13.6 KB

12.2 07 Bayes Classifier - Testing, Inference & Evaluation.ipynb.zip.zip

248.9 KB

/09. Introduction to Neural Networks and How to Use Pre-Trained Models/

1. The Human Brain and the Inspiration for Artificial Neural Networks.mp4

54.3 MB

1. The Human Brain and the Inspiration for Artificial Neural Networks.vtt

9.8 KB

1.1 Course Resources.html

0.1 KB

2. Layers, Feature Generation and Learning.mp4

153.8 MB

2. Layers, Feature Generation and Learning.vtt

24.8 KB

3. Costs and Disadvantages of Neural Networks.mp4

96.5 MB

3. Costs and Disadvantages of Neural Networks.vtt

17.2 KB

4. Preprocessing Image Data and How RGB Works.mp4

98.2 MB

4. Preprocessing Image Data and How RGB Works.vtt

14.5 KB

4.1 TF_Keras_Classification_Images.zip.zip

513.1 KB

5. Importing Keras Models and the Tensorflow Graph.mp4

68.6 MB

5. Importing Keras Models and the Tensorflow Graph.vtt

10.4 KB

6. Making Predictions using InceptionResNet.mp4

141.1 MB

6. Making Predictions using InceptionResNet.vtt

16.9 KB

7. Coding Challenge Solution Using other Keras Models.mp4

108.6 MB

7. Coding Challenge Solution Using other Keras Models.vtt

11.7 KB

8. Download the Complete Notebook Here.html

0.3 KB

8.1 09 Neural Nets Pretrained Image Classification.ipynb.zip.zip

585.6 KB

/10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/

1. Solving a Business Problem with Image Classification.mp4

32.0 MB

1. Solving a Business Problem with Image Classification.vtt

4.5 KB

1.1 Course Resources.html

0.1 KB

2. Installing Tensorflow and Keras for Jupyter.mp4

44.1 MB

2. Installing Tensorflow and Keras for Jupyter.vtt

5.9 KB

3. Gathering the CIFAR 10 Dataset.mp4

32.9 MB

3. Gathering the CIFAR 10 Dataset.vtt

5.5 KB

4. Exploring the CIFAR Data.mp4

115.7 MB

4. Exploring the CIFAR Data.vtt

16.2 KB

5. Pre-processing Scaling Inputs and Creating a Validation Dataset.mp4

97.7 MB

5. Pre-processing Scaling Inputs and Creating a Validation Dataset.vtt

17.8 KB

6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.mp4

108.6 MB

6. Compiling a Keras Model and Understanding the Cross Entropy Loss Function.vtt

16.7 KB

7. Interacting with the Operating System and the Python Try-Catch Block.mp4

139.9 MB

7. Interacting with the Operating System and the Python Try-Catch Block.vtt

21.3 KB

8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.mp4

105.3 MB

8. Fit a Keras Model and Use Tensorboard to Visualise Learning and Spot Problems.vtt

12.7 KB

9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4

200.8 MB

9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.vtt

25.2 KB

10. Use the Model to Make Predictions.vtt

29.6 KB

11. Model Evaluation and the Confusion Matrix.mp4

65.8 MB

11. Model Evaluation and the Confusion Matrix.vtt

9.6 KB

12. Model Evaluation and the Confusion Matrix.mp4

264.1 MB

12. Model Evaluation and the Confusion Matrix.vtt

36.0 KB

13. Download the Complete Notebook Here.html

0.2 KB

13.1 10 Neural Nets - Keras CIFAR10 Classification.ipynb.zip.zip

123.0 KB

/11. Use Tensorflow to Classify Handwritten Digits/

1. What's coming up.mp4

7.4 MB

1. What's coming up.vtt

2.3 KB

1.1 Course Resources.html

0.1 KB

2. Getting the Data and Loading it into Numpy Arrays.mp4

55.4 MB

2. Getting the Data and Loading it into Numpy Arrays.vtt

8.1 KB

2.1 MNIST.zip.zip

15.5 MB

3. Data Exploration and Understanding the Structure of the Input Data.mp4

34.0 MB

3. Data Exploration and Understanding the Structure of the Input Data.vtt

5.9 KB

4. Data Preprocessing One-Hot Encoding and Creating the Validation Dataset.vtt

11.4 KB

5. What is a Tensor.mp4

47.6 MB

5. What is a Tensor.vtt

8.1 KB

6. Creating Tensors and Setting up the Neural Network Architecture.mp4

158.2 MB

6. Creating Tensors and Setting up the Neural Network Architecture.vtt

26.0 KB

7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.mp4

78.8 MB

7. Defining the Cross Entropy Loss Function, the Optimizer and the Metrics.vtt

12.7 KB

8. TensorFlow Sessions and Batching Data.mp4

105.2 MB

8. TensorFlow Sessions and Batching Data.vtt

18.3 KB

9. Tensorboard Summaries and the Filewriter.mp4

134.5 MB

9. Tensorboard Summaries and the Filewriter.vtt

20.8 KB

10. Understanding the Tensorflow Graph Nodes and Edges.mp4

121.4 MB

10. Understanding the Tensorflow Graph Nodes and Edges.vtt

19.0 KB

11. Name Scoping and Image Visualisation in Tensorboard.mp4

162.9 MB

11. Name Scoping and Image Visualisation in Tensorboard.vtt

23.5 KB

12. Different Model Architectures Experimenting with Dropout.mp4

224.1 MB

12. Different Model Architectures Experimenting with Dropout.vtt

26.9 KB

13. Prediction and Model Evaluation.mp4

116.1 MB

13. Prediction and Model Evaluation.vtt

16.9 KB

14. Download the Complete Notebook Here.html

0.2 KB

14.1 11 Neural Networks - TF Handwriting Recognition.ipynb.zip.zip

6.8 KB

/12. Next Steps/

1. Where next.html

4.0 KB

2. What Modules Do You Want to See.html

0.4 KB

3. Stay in Touch!.html

1.1 KB

 

Total files 377


Copyright © 2024 FileMood.com