FileMood

Download [UdemyCourseDownloader] Introduction to Machine Learning & Deep Learning in Python

UdemyCourseDownloader Introduction to Machine Learning Deep Learning in Python

Name

[UdemyCourseDownloader] Introduction to Machine Learning & Deep Learning in Python

 DOWNLOAD Copy Link

Total Size

2.0 GB

Total Files

300

Hash

E5CD7A86473F94416CFBD436C50A552335331427

/17. Convolutional Neural Networks/

8. Convolutional neural networks - illustration.vtt

74.0 MB

1. ----- CNN THEORY -----.html

0.1 KB

2. Convolutional neural networks basics.mp4

10.0 MB

2. Convolutional neural networks basics.vtt

7.1 KB

3. Feature selection.mp4

7.3 MB

3. Feature selection.vtt

4.9 KB

4. Convolutional neural networks - kernel.mp4

6.7 MB

4. Convolutional neural networks - kernel.vtt

4.9 KB

5. Convolutional neural networks - kernel II.mp4

8.2 MB

5. Convolutional neural networks - kernel II.vtt

6.5 KB

6. Convolutional neural networks - pooling.mp4

10.3 MB

6. Convolutional neural networks - pooling.vtt

6.9 KB

7. Convolutional neural networks - flattening.mp4

8.8 MB

7. Convolutional neural networks - flattening.vtt

5.7 KB

8. Convolutional neural networks - illustration.mp4

6.3 MB

9. ----- HANDWRITTEN DIGITS -----.html

0.2 KB

10. Handwritten digit classification I.mp4

17.3 MB

10. Handwritten digit classification I.vtt

7.1 KB

11. Handwritten digit classification II.mp4

16.4 MB

11. Handwritten digit classification II.vtt

9.4 KB

12. Handwritten digit classification III.mp4

10.9 MB

12. Handwritten digit classification III.vtt

5.6 KB

13. ARTICLE Regularization (L1, L2 and dropout).html

0.2 KB

/

udemycoursedownloader.com.url

0.1 KB

Udemy Course downloader.txt

0.1 KB

/01. Introduction/

1. Introduction.mp4

3.6 MB

1. Introduction.vtt

2.5 KB

2. Introduction to machine learning.mp4

8.4 MB

2. Introduction to machine learning.vtt

6.4 KB

/02. Installations/

1. Installing Anaconda.mp4

4.5 MB

1. Installing Anaconda.vtt

2.3 KB

2. Installing Spyder.mp4

2.9 MB

2. Installing Spyder.vtt

1.9 KB

3. Installing Keras and TensorFlow.mp4

6.2 MB

3. Installing Keras and TensorFlow.vtt

68.5 MB

/03. Linear Regression/

1. Linear regression introduction.mp4

27.7 MB

1. Linear regression introduction.vtt

9.6 KB

2. Linear regression theory - optimization.mp4

44.3 MB

2. Linear regression theory - optimization.vtt

8.4 KB

3. Linear regression theory - gradient descent.mp4

11.6 MB

3. Linear regression theory - gradient descent.vtt

8.1 KB

4. Linear regression implementation I.mp4

17.5 MB

4. Linear regression implementation I.vtt

7.6 KB

5. Linear regression implementation II.mp4

9.2 MB

5. Linear regression implementation II.vtt

5.5 KB

/04. Logistic Regression/

1. Logistic regression introduction.mp4

18.5 MB

1. Logistic regression introduction.vtt

14.1 KB

2. Logistic regression introduction II.mp4

7.0 MB

2. Logistic regression introduction II.vtt

4.5 KB

3. Logistic regression example I - sigmoid function.mp4

13.7 MB

3. Logistic regression example I - sigmoid function.vtt

8.2 KB

4. Logistic regression example II- credit scoring.mp4

22.4 MB

4. Logistic regression example II- credit scoring.vtt

8.4 KB

5. Logistic regression example III - credit scoring.mp4

11.4 MB

5. Logistic regression example III - credit scoring.vtt

6.5 KB

6. Cross validation introduction.mp4

12.3 MB

6. Cross validation introduction.vtt

6.2 KB

7. Cross validation example.mp4

4.4 MB

7. Cross validation example.vtt

2.7 KB

/05. K-Nearest Neighbor Classifier/

1. K-nearest neighbor introduction.mp4

9.9 MB

1. K-nearest neighbor introduction.vtt

6.6 KB

2. K-nearest neighbor introduction - lazy learning.mp4

8.5 MB

2. K-nearest neighbor introduction - lazy learning.vtt

4.8 KB

3. K-nearest neighbor introduction - Euclidean-distance.mp4

9.0 MB

3. K-nearest neighbor introduction - Euclidean-distance.vtt

6.4 KB

4. UPDATE bias and variance.html

0.3 KB

5. K-nearest neighbor implementation I.mp4

7.3 MB

5. K-nearest neighbor implementation I.vtt

3.4 KB

6. K-nearest neighbor implementation II.mp4

10.4 MB

6. K-nearest neighbor implementation II.vtt

6.8 KB

7. K-nearest neighbor implementation III.mp4

8.3 MB

7. K-nearest neighbor implementation III.vtt

4.7 KB

/06. Naive Bayes Classifier/

1. Naive Bayes classifier introduction I.mp4

18.3 MB

1. Naive Bayes classifier introduction I.vtt

9.7 KB

2. Naive Bayes classifier introduction II - illustration.mp4

8.8 MB

2. Naive Bayes classifier introduction II - illustration.vtt

4.9 KB

3. Naive Bayes classifier implementation.mp4

8.4 MB

3. Naive Bayes classifier implementation.vtt

5.2 KB

4. ----- TEXT CLASSIFICATION -----.html

0.2 KB

5. Text clustering - basics.mp4

23.2 MB

5. Text clustering - basics.vtt

9.7 KB

6. Text clustering - inverse document frequency (TF-IDF).mp4

10.5 MB

6. Text clustering - inverse document frequency (TF-IDF).vtt

5.3 KB

7. Naive Bayes example - clustering news.mp4

24.5 MB

7. Naive Bayes example - clustering news.vtt

10.7 KB

/07. Support Vector Machine (SVM)/

1. Support vector machine introduction I - linear case.mp4

21.8 MB

1. Support vector machine introduction I - linear case.vtt

10.1 KB

2. Support vector machine introduction II - non-linear case.mp4

18.1 MB

2. Support vector machine introduction II - non-linear case.vtt

8.3 KB

3. Support vector machine introduction III - kernels.mp4

10.4 MB

3. Support vector machine introduction III - kernels.vtt

5.1 KB

4. Support vector machine example I - simple.mp4

11.0 MB

4. Support vector machine example I - simple.vtt

4.6 KB

5. Support vector machine example II - iris dataset.mp4

22.7 MB

5. Support vector machine example II - iris dataset.vtt

8.7 KB

6. Support vector machine example III - digit recognition.mp4

17.2 MB

6. Support vector machine example III - digit recognition.vtt

7.6 KB

/08. Decision Trees/

1. Decision trees introduction - basics.mp4

12.3 MB

1. Decision trees introduction - basics.vtt

9.0 KB

2. Decision trees introduction - entropy.mp4

20.2 MB

2. Decision trees introduction - entropy.vtt

10.1 KB

3. Decision trees introduction - information gain.mp4

49.2 MB

3. Decision trees introduction - information gain.vtt

9.0 KB

4. Decision trees introduction - pros and cons.mp4

4.4 MB

4. Decision trees introduction - pros and cons.vtt

2.9 KB

5. Decision trees implementation.mp4

14.3 MB

5. Decision trees implementation.vtt

8.6 KB

6. Decision trees implementation II.mp4

7.0 MB

6. Decision trees implementation II.vtt

7.0 MB

7. The Gini-index approach.mp4

19.7 MB

7. The Gini-index approach.vtt

10.3 KB

/09. Random Forest Classifier/

1. Pruning introduction.mp4

10.3 MB

1. Pruning introduction.vtt

7.6 KB

2. Bagging introduction.mp4

12.3 MB

2. Bagging introduction.vtt

9.3 KB

3. Random forest classifier introduction.mp4

9.1 MB

3. Random forest classifier introduction.vtt

6.5 KB

4. Random forests example I - iris dataset.mp4

11.9 MB

4. Random forests example I - iris dataset.vtt

5.3 KB

5. Random forests example II - credit scoring.mp4

4.4 MB

5. Random forests example II - credit scoring.vtt

2.0 KB

6. Random forests example III - parameter tuning.mp4

9.6 MB

6. Random forests example III - parameter tuning.vtt

5.2 KB

/10. Boosting/

1. Boosting introduction - basics.mp4

8.8 MB

1. Boosting introduction - basics.vtt

5.1 KB

2. Boosting introduction - illustration.mp4

8.6 MB

2. Boosting introduction - illustration.vtt

6.4 KB

3. Boosting introduction - equations.mp4

14.4 MB

3. Boosting introduction - equations.vtt

7.9 KB

4. Boosting introduction - final formula.mp4

13.6 MB

4. Boosting introduction - final formula.vtt

9.2 KB

5. Boosting implementation I - iris dataset.mp4

12.9 MB

5. Boosting implementation I - iris dataset.vtt

6.4 KB

6. Boosting implementation II -tuning.mp4

10.9 MB

6. Boosting implementation II -tuning.vtt

5.3 KB

7. Boosting vs. bagging.mp4

5.5 MB

7. Boosting vs. bagging.vtt

3.6 KB

/11. Clustering/

1. Principal component anlysis introduction.mp4

9.0 MB

1. Principal component anlysis introduction.vtt

4.3 KB

2. Principal component analysis example.mp4

14.7 MB

2. Principal component analysis example.vtt

6.6 KB

3. K-means clustering introduction I.mp4

14.3 MB

3. K-means clustering introduction I.vtt

7.1 KB

4. K-means clustering introduction II.mp4

9.9 MB

4. K-means clustering introduction II.vtt

4.6 KB

5. K-means clustering example.mp4

9.9 MB

5. K-means clustering example.vtt

5.6 KB

6. K-means clustering - text clustering.mp4

19.8 MB

6. K-means clustering - text clustering.vtt

7.9 KB

7. DBSCAN introduction.mp4

11.6 MB

7. DBSCAN introduction.vtt

5.5 KB

8. DBSCAN example.mp4

8.3 MB

8. DBSCAN example.vtt

5.1 KB

9. Hierarchical clustering introduction.mp4

14.3 MB

9. Hierarchical clustering introduction.vtt

7.2 KB

10. Hierarchical clustering example.mp4

12.5 MB

10. Hierarchical clustering example.vtt

6.3 KB

/12. Neural Networks/

1. ---- NEURAL NETWORKS INTRODUCTION ----.html

0.0 KB

2. Axons and neurons in the human brain.mp4

20.2 MB

2. Axons and neurons in the human brain.vtt

9.6 KB

3. Modeling human brain.mp4

17.0 MB

3. Modeling human brain.vtt

8.5 KB

4. Learning paradigms.mp4

6.8 MB

4. Learning paradigms.vtt

3.1 KB

5. Artificial neurons - the model.mp4

17.4 MB

5. Artificial neurons - the model.vtt

7.6 KB

6. Artificial neurons - activation functions.mp4

14.9 MB

6. Artificial neurons - activation functions.vtt

6.7 KB

7. Artificial neurons - an example.mp4

11.9 MB

7. Artificial neurons - an example.vtt

4.9 KB

8. Neural networks - the big picture.mp4

11.3 MB

8. Neural networks - the big picture.vtt

4.9 KB

9. Applications of neural networks.mp4

5.5 MB

9. Applications of neural networks.vtt

2.4 KB

10. ---- BACKPROPAGATION ----.html

0.0 KB

11. Feedforward neural networks.mp4

19.3 MB

11. Feedforward neural networks.vtt

9.1 KB

12. Optimization - cost function.mp4

27.2 MB

12. Optimization - cost function.vtt

12.1 KB

13. Simplified feedforward network.mp4

20.4 MB

13. Simplified feedforward network.vtt

9.2 KB

14. Feedforward neural network topology.mp4

15.4 MB

14. Feedforward neural network topology.vtt

6.7 KB

15. The learning algorithm.mp4

13.9 MB

15. The learning algorithm.vtt

6.2 KB

16. Error calculation.mp4

14.4 MB

16. Error calculation.vtt

6.7 KB

17. Gradient calculation I - output layer.mp4

21.3 MB

17. Gradient calculation I - output layer.vtt

9.5 KB

18. Gradient calculation II - hidden layer.mp4

9.6 MB

18. Gradient calculation II - hidden layer.vtt

4.2 KB

19. Backpropagation.mp4

13.3 MB

19. Backpropagation.vtt

5.9 KB

20. Backpropagation II.mp4

4.9 MB

20. Backpropagation II.vtt

2.1 KB

21. Applications of neural networks I - character recognition.mp4

9.2 MB

21. Applications of neural networks I - character recognition.vtt

4.5 KB

22. Applications of neural networks II - stock market forecast.mp4

10.0 MB

22. Applications of neural networks II - stock market forecast.vtt

4.8 KB

23. Deep learning.mp4

9.9 MB

23. Deep learning.vtt

4.7 KB

24. ----- IMPLEMENTATION -----.html

0.1 KB

25. Building networks.mp4

13.4 MB

25. Building networks.vtt

6.7 KB

26. Building networks II.mp4

12.6 MB

26. Building networks II.vtt

6.1 KB

27. Handling datasets.mp4

6.5 MB

27. Handling datasets.vtt

3.2 KB

28. Neural network example I - XOR problem.mp4

18.5 MB

28. Neural network example I - XOR problem.vtt

8.0 KB

29. Neural network example II - iris dataset.mp4

37.3 MB

29. Neural network example II - iris dataset.vtt

8.3 KB

/13. Machine Learning in Finance/

1. Stock market basics.mp4

5.9 MB

1. Stock market basics.vtt

3.6 KB

2. Fetching data from Yahoo Finance.mp4

8.3 MB

2. Fetching data from Yahoo Finance.vtt

4.4 KB

3. Predicting stock prices logistic regression.mp4

11.3 MB

3. Predicting stock prices logistic regression.vtt

4.4 KB

4. Predicting stock prices k-nearest neighbor.mp4

7.4 MB

4. Predicting stock prices k-nearest neighbor.vtt

3.4 KB

5. Predicting stock prices support vector machine.mp4

9.1 MB

5. Predicting stock prices support vector machine.vtt

3.7 KB

6. Predicting stock prices - conclusion.mp4

3.7 MB

6. Predicting stock prices - conclusion.vtt

2.0 KB

/14. Computer Vision - Face Detection/

1. Computer vision introduction.mp4

6.0 MB

1. Computer vision introduction.vtt

4.5 KB

2. Viola-Jones algorithm.mp4

22.0 MB

2. Viola-Jones algorithm.vtt

13.0 KB

3. Haar-features.mp4

13.3 MB

3. Haar-features.vtt

9.1 KB

4. Integral images.mp4

10.0 MB

4. Integral images.vtt

7.0 KB

5. Boosting in computer vision.mp4

12.9 MB

5. Boosting in computer vision.vtt

7.2 KB

6. Cascading.mp4

6.5 MB

6. Cascading.vtt

4.9 KB

7. Face detection implementation I - installing OpenCV.mp4

11.1 MB

7. Face detection implementation I - installing OpenCV.vtt

4.9 KB

8. Face detection implementation II - CascadeClassifier.mp4

16.7 MB

8. Face detection implementation II - CascadeClassifier.vtt

7.6 KB

9. Face detection implementation III - CascadeClassifier parameters.mp4

9.0 MB

9. Face detection implementation III - CascadeClassifier parameters.vtt

4.5 KB

10. Face detection implementation IV - tuning the parameters.mp4

9.2 MB

10. Face detection implementation IV - tuning the parameters.vtt

3.3 KB

/15. Deep Learning/

1. Types of neural networks.mp4

5.8 MB

1. Types of neural networks.vtt

4.5 KB

/16. Deep Neural Networks/

1. Deep neural networks.mp4

8.0 MB

1. Deep neural networks.vtt

6.4 KB

2. Activation functions revisited.mp4

16.2 MB

2. Activation functions revisited.vtt

11.0 KB

3. Loss functions.mp4

10.9 MB

3. Loss functions.vtt

6.9 KB

4. Gradient descent stochastic gradient descent.mp4

12.9 MB

4. Gradient descent stochastic gradient descent.vtt

8.5 KB

5. Hyperparameters.mp4

8.7 MB

5. Hyperparameters.vtt

6.4 KB

6. ----- XOR PROBLEM -----.html

0.1 KB

7. Deep neural network implementation I.mp4

15.8 MB

7. Deep neural network implementation I.vtt

7.3 KB

8. Deep neural network implementation II.mp4

16.6 MB

8. Deep neural network implementation II.vtt

7.5 KB

9. Deep neural network implementation III.mp4

19.3 MB

9. Deep neural network implementation III.vtt

7.0 KB

10. ----- IRIS DATASET -----.html

0.1 KB

11. Multiclass classification implementation I.mp4

11.6 MB

11. Multiclass classification implementation I.vtt

6.2 KB

12. Multiclass classification implementation II.mp4

10.8 MB

12. Multiclass classification implementation II.vtt

5.7 KB

13. ARTICLE Optimizers Explained (SGD, ADAGrad, ADAM...).html

0.2 KB

/18. Recurrent Neural Networks/

1. ----- RNN THEORY -----.html

0.1 KB

2. Why do recurrent neural networks are important.mp4

7.9 MB

2. Why do recurrent neural networks are important.vtt

5.2 KB

3. Recurrent neural networks basics.mp4

13.5 MB

3. Recurrent neural networks basics.vtt

10.2 KB

4. Vanishing and exploding gradients problem.mp4

20.6 MB

4. Vanishing and exploding gradients problem.vtt

10.8 KB

5. Long-short term memory (LTSM) model.mp4

17.9 MB

5. Long-short term memory (LTSM) model.vtt

12.6 KB

6. Gated recurrent units (GRUs).mp4

5.3 MB

6. Gated recurrent units (GRUs).vtt

4.0 KB

7. --- STOCK MAKRET ---.html

0.1 KB

8. Stock price prediction example I.mp4

11.6 MB

8. Stock price prediction example I.vtt

6.7 KB

9. Stock price prediction example II.mp4

19.3 MB

9. Stock price prediction example II.vtt

4.7 KB

10. Stock price prediction example III.mp4

5.2 MB

10. Stock price prediction example III.vtt

2.7 KB

11. Stock price prediction example IV.mp4

15.3 MB

11. Stock price prediction example IV.vtt

6.7 KB

12. Stock price prediction example V.mp4

7.1 MB

12. Stock price prediction example V.vtt

3.7 KB

13. Stock price prediction example VI.mp4

15.9 MB

13. Stock price prediction example VI.vtt

5.6 KB

14. Stock price prediction example VII.mp4

7.6 MB

14. Stock price prediction example VII.vtt

3.3 KB

/19. Course Materials (DOWNLOADS)/

1. Course materials.html

0.1 KB

1.1 PythonMachineLearning.zip.zip

23.0 MB

2. House prices csv file.html

0.1 KB

2.1 house_prices.csv.csv

0.2 KB

/20. DISCOUNT FOR OTHER COURSES!/

1. 90% OFF For Other Courses.html

5.2 KB

 

Total files 300


Copyright © 2024 FileMood.com