FileMood

Download [ WebToolTip.com ] Graph Neural Networks in Action, Video Edition

WebToolTip com Graph Neural Networks in Action Video Edition

Name

[ WebToolTip.com ] Graph Neural Networks in Action, Video Edition

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

1.9 GB

Total Files

61

Last Seen

2025-06-28 00:32

Hash

44193ED76A9C65A213E0B4615E756ACFE93961DB

/

Get Bonus Downloads Here.url

0.2 KB

/~Get Your Files Here !/

001. Part 1. First steps.mp4

3.1 MB

002. Chapter 1. Discovering graph neural networks.mp4

32.3 MB

003. Chapter 1. Graph-based learning.mp4

60.6 MB

004. Chapter 1. GNN applications Case studies.mp4

22.5 MB

005. Chapter 1. When to use a GNN.mp4

27.2 MB

006. Chapter 1. Understanding how GNNs operate.mp4

24.9 MB

007. Chapter 1. Summary.mp4

6.9 MB

008. Chapter 2. Graph embeddings.mp4

75.7 MB

009. Chapter 2. Creating embeddings with a GNN.mp4

35.7 MB

010. Chapter 2. Using node embeddings.mp4

52.7 MB

011. Chapter 2. Under the Hood.mp4

65.4 MB

012. Chapter 2. Summary.mp4

6.7 MB

013. Part 2. Graph neural networks.mp4

3.2 MB

014. Chapter 3. Graph convolutional networks and GraphSAGE.mp4

88.1 MB

015. Chapter 3. Aggregation methods.mp4

53.8 MB

016. Chapter 3. Further optimizations and refinements.mp4

41.9 MB

017. Chapter 3. Under the hood.mp4

68.0 MB

018. Chapter 3. Amazon Products dataset.mp4

17.9 MB

019. Chapter 3. Summary.mp4

8.3 MB

020. Chapter 4. Graph attention networks.mp4

15.4 MB

021. Chapter 4. Exploring the review spam dataset.mp4

50.8 MB

022. Chapter 4. Training baseline models.mp4

26.4 MB

023. Chapter 4. Training GAT models.mp4

39.5 MB

024. Chapter 4. Under the hood.mp4

33.5 MB

025. Chapter 4. Summary.mp4

6.2 MB

026. Chapter 5. Graph autoencoders.mp4

34.0 MB

027. Chapter 5. Graph autoencoders for link prediction.mp4

41.1 MB

028. Chapter 5. Variational graph autoencoders.mp4

36.0 MB

029. Chapter 5. Generating graphs using GNNs.mp4

51.2 MB

030. Chapter 5. Under the hood.mp4

33.9 MB

031. Chapter 5. Summary.mp4

6.6 MB

032. Part 3. Advanced topics.mp4

4.6 MB

033. Chapter 6. Dynamic graphs Spatiotemporal GNNs.mp4

27.4 MB

034. Chapter 6. Problem definition Pose estimation.mp4

40.5 MB

035. Chapter 6. Dynamic graph neural networks.mp4

30.0 MB

036. Chapter 6. Neural relational inference.mp4

86.8 MB

037. Chapter 6. Under the hood.mp4

34.1 MB

038. Chapter 6. Summary.mp4

4.9 MB

039. Chapter 7. Learning and inference at scale.mp4

26.4 MB

040. Chapter 7. Framing problems of scale.mp4

43.9 MB

041. Chapter 7. Techniques for tackling problems of scale.mp4

17.4 MB

042. Chapter 7. Choice of hardware configuration.mp4

32.5 MB

043. Chapter 7. Choice of data representation.mp4

18.0 MB

044. Chapter 7. Choice of GNN algorithm.mp4

25.5 MB

045. Chapter 7. Batching using a sampling method.mp4

27.4 MB

046. Chapter 7. Parallel and distributed processing.mp4

30.1 MB

047. Chapter 7. Training with remote storage.mp4

27.0 MB

048. Chapter 7. Graph coarsening.mp4

28.2 MB

049. Chapter 7. Summary.mp4

5.8 MB

050. Chapter 8. Considerations for GNN projects.mp4

25.0 MB

051. Chapter 8. Designing graph models.mp4

59.9 MB

052. Chapter 8. Data pipeline example.mp4

80.1 MB

053. Chapter 8. Where to find graph data.mp4

13.5 MB

054. Chapter 8. Summary.mp4

12.9 MB

055. appendix A. Discovering graphs.mp4

55.9 MB

056. appendix A. Graph representations.mp4

71.8 MB

057. appendix A. Graph systems.mp4

15.3 MB

058. appendix A. Graph algorithms.mp4

12.2 MB

059. appendix A. How to read GNN literature.mp4

10.1 MB

Bonus Resources.txt

0.1 KB

 

Total files 61


Copyright © 2025 FileMood.com