FileMood

Download AWS SageMaker Practical for Beginners. Build 6 Projects

AWS SageMaker Practical for Beginners Build Projects

Name

AWS SageMaker Practical for Beginners. Build 6 Projects

  DOWNLOAD Copy Link

Trouble downloading? see How To

Total Size

9.6 GB

Total Files

99

Last Seen

2025-07-17 23:40

Hash

9CF42EC09D167BA3B6D7481C9917AECA1DBF3112

/.../3 - Project #1 - Employee Salary Predictions Using AWS SageMaker Linear Learner/

30 - Coding Task #7 - Train a Linear Learner Model in AWS SageMaker.mp4

507.2 MB

19 - Project Overview.mp4

22.4 MB

20 - Simple Linear Regression Intuition.mp4

63.2 MB

21 - Least Sum of Squares.mp4

54.7 MB

22 - AWS SageMaker Linear Learner Overview.mp4

176.4 MB

23 - Coding Task #1A - Instantiate AWS SageMaker Notebook Instance (Method #1).mp4

204.9 MB

24 - Coding Task #1B - Using AWS SageMaker Studio (Method #2).mp4

92.7 MB

25 - Coding Task #2 - Import Key libraries and dataset.mp4

70.8 MB

26 - Coding Task #3 - Perform Exploratory Data Analysis.mp4

151.0 MB

27 - Coding Task #4 - Create Training and Testing Dataset.mp4

96.4 MB

28 - Coding Task #5 - Train a Linear Regression Model in SkLearn.mp4

77.9 MB

29 - Coding Task #6 - Evaluate Trained Model Performance.mp4

65.8 MB

31 - Coding Task #8 - Deploy Model & invoke endpoint in SageMaker.mp4

131.2 MB

/

TutsNode.com.txt

0.1 KB

[TGx]Downloaded from torrentgalaxy.to .txt

0.6 KB

/[TutsNode.com] - AWS SageMaker Practical for Beginners/

SageMaker+Practical+Course+Package.zip

152.2 MB

/.../1 - Introduction, Success Tips & Best Practices and Key Learning Outcomes/

01 - Course Introduction and Welcome Message.mp4

25.7 MB

02 - Updates on Udemy Reviews.mp4

6.2 MB

03 - Course Key Tips and Best Practices.mp4

53.6 MB

04 - Course Outline and Key Learning Outcomes.mp4

163.7 MB

/.../2 - Introduction to AI_ML, AWS and Cloud Computing/

05 - AWS Free Tier Account Setup and Overview.mp4

34.6 MB

06 - Introduction to AI, Machine Learning and Deep Learning.mp4

111.6 MB

07 - Introduction to AI, Machine Learning and Deep Learning - Part #2.mp4

116.5 MB

08 - Good Data Vs. Bad Data.mp4

48.7 MB

09 - Introduction to AWS and Cloud Computing.mp4

74.8 MB

10 - Key Machine Learning Components and AWS Management Console Tour.mp4

44.1 MB

11 - AWS Regions and Availability Zones.mp4

60.5 MB

12 - Amazon S3.mp4

93.2 MB

13 - Amazon EC2 and IAM.mp4

86.8 MB

14 - AWS SageMaker Overview.mp4

40.3 MB

15 - AWS SageMaker Walk-through.mp4

123.9 MB

16 - AWS SageMaker Studio Overview.mp4

50.0 MB

17 - AWS SageMaker Studio Walk-through.mp4

81.5 MB

18 - SageMaker Models Deployment.mp4

140.3 MB

/.../4 - Project #2 - Medical Insurance Premium Prediction/

32 - Project Overview and Introduction.mp4

12.0 MB

33 - Multiple Linear Regression Intuition.mp4

21.8 MB

34 - Regression Metrics and KPIs - RMSE, MSE, MAE, MAPE.mp4

87.5 MB

35 - Regression Metrics and KPIs - R2 and Adjusted R2.mp4

87.0 MB

36 - Coding Task #1 & #2 - Import Dataset and Key Libraries.mp4

142.7 MB

37 - Coding Task #3 - Perform Exploratory Data Analysis.mp4

165.9 MB

38 - Coding Task #4 - Perform Data Visualization.mp4

118.2 MB

39 - Coding Task #5 - Create Training and Testing Datasets.mp4

79.4 MB

40 - Coding Task #6 - Train a Machine Learning Model Locally.mp4

60.7 MB

41 - Coding Task #7 - Train a Linear Learner Model in AWS SageMaker.mp4

361.2 MB

42 - Coding Task #8 - Deploy Trained Model and Invoke Endpoint.mp4

116.8 MB

43 - Artificial Neural Networks for Regression Tasks.mp4

73.6 MB

44 - Activation Functions - Sigmoid, RELU and Tanh.mp4

21.0 MB

45 - Multilayer Perceptron Networks.mp4

20.6 MB

46 - How do Artificial Neural Networks Train.mp4

43.5 MB

47 - Gradient Descent Algorithm.mp4

110.8 MB

48 - Backpropagation Algorithm.mp4

23.9 MB

49 - Coding Task #9 - Train Artificial Neural Networks for Regression Tasks.mp4

262.4 MB

/.../5 - Project #3 - Retail Sales Prediction Using AWS SageMaker XGBoost (Regression)/

50 - Introduction to Case Study.mp4

76.7 MB

51 - Basics - What is the difference between Bias & Variance.mp4

69.6 MB

52 - Basics - L1 & L2 Regularization - Part #1.mp4

33.7 MB

53 - Basics - L1 & L2 Regularization - Part #2.mp4

17.0 MB

54 - Introduction to XGBoost (Extreme Gradient Boosting) algorithm.mp4

36.7 MB

55 - What is Boosting.mp4

48.8 MB

56 - Decision Trees and Ensemble Learning.mp4

37.7 MB

57 - Gradient Boosted Trees - Deep Dive - Part #1.mp4

188.5 MB

58 - Gradient Boosted Trees - Deep Dive - Part #2.mp4

80.2 MB

59 - AWS SageMaker XGBoost Algorithm.mp4

58.5 MB

60 - Project Introduction and Notebook Instance Instantiation.mp4

110.2 MB

61 - Coding Task #1 #2 #3 - Load Dataset_Libraries and Perform Data Exploration.mp4

236.3 MB

62 - Coding Task #4 - Merge and Manipulate DataFrame Using Pandas.mp4

77.2 MB

63 - Coding Task #5 - Explore Merged Datasets.mp4

66.2 MB

64 - Coding Task #6 #7 - Visualize Dataset.mp4

215.1 MB

65 - Coding Task #8 - Prepare the Data To Perform Training.mp4

35.2 MB

66 - Coding Task #9 - Train XGBoost Locally.mp4

88.9 MB

67 - Coding Task #10 - Train XGBoost Using SageMaker.mp4

184.5 MB

68 - Coding Task #11 - Deploy XGBoost endpoint and Make Predictions.mp4

72.5 MB

69 - Coding Task #12 - Perform Hyperparameters Tuning.mp4

174.5 MB

70 - Coding Task #13 - Retrain the Model Using best (optimized) Hyperparameters.mp4

102.3 MB

/.../6 - Project #4 - Predict Cardiovascular Disease Using PCA & XGBoost (Classification)/

71 - Introduction and Project Overview.mp4

103.3 MB

72 - Principal Component Analysis (PCA) Intuition.mp4

117.2 MB

73 - XGBoost for Classification Tasks (Review Lecture).mp4

57.7 MB

74 - Confusion Matrix.mp4

56.1 MB

75 - Precision, Recall, and F1-Score.mp4

217.4 MB

76 - Area Under Curve (AUC) and Receiver Operating Characteristics (ROC) Metrics.mp4

44.0 MB

77 - Overfitting and Under fitting Models.mp4

21.2 MB

78 - Coding Task #1 - SageMaker Studio Notebook Setup.mp4

60.7 MB

79 - Coding Task #2 & #3 - Import Data_Libraries & Perform Exploratory data analysis.mp4

93.4 MB

80 - Coding Task #4 & #5 - Visualize Datasets & Prepare Training_Testing Data.mp4

95.2 MB

81 - Coding Task #6 - Train & Test XGboost and Perform Grid Search (Local Mode).mp4

240.1 MB

82 - Coding Task #7 - Train a PCA Model in AWS SageMaker.mp4

163.2 MB

83 - Coding Task #8 - Deploy Trained PCA Model Endpoint & Envoke endpoint.mp4

98.3 MB

84 - Coding Task #9 - Train XGBoost (SageMaker Built-in) to do Classification Tasks.mp4

121.1 MB

85 - Coding Task #10 - Deploy Endpoint, Make Inference @ Test Model.mp4

87.1 MB

/.../7 - Project #5 - Deep Learning for Traffic Sign Classification Using AWS SageMaker/

86 - Project Overview and Introduction.mp4

101.5 MB

87 - What are Convolutional Neural Networks and How do they Learn - Part #1.mp4

123.8 MB

88 - What are Convolutional Neural Networks and How do they Learn - Part #2.mp4

130.3 MB

89 - How to Improve CNNs Performance.mp4

13.9 MB

90 - Confusion Matrix.mp4

42.4 MB

91 - LeNet Network Architecture.mp4

89.9 MB

92 - Request AWS SageMaker Service Limit Increase.mp4

5.2 MB

93 - Coding Part #1 #2 - Import Images and Visualize Them.mp4

165.5 MB

94 - Coding #3 #4 - Upload Training_Testing Data to S3.mp4

58.8 MB

95 - Coding Task #5 - Build and Train CNNs.mp4

216.1 MB

96 - Coding Task #6 - Deploy Trained Model Using SageMaker.mp4

73.9 MB

 

Total files 99


Copyright © 2025 FileMood.com