FileMood

Download Modern Artificial Intelligence Masterclass Build 6 Projects

Modern Artificial Intelligence Masterclass Build Projects

Name

Modern Artificial Intelligence Masterclass Build 6 Projects

 DOWNLOAD Copy Link

Total Size

9.1 GB

Total Files

187

Last Seen

2024-11-13 23:23

Hash

B58642EBB82D2F21D3526BC5CF6636130F6937FC

/3. Emotion AI/

7. Task #6 - Understand Artificial Neural Networks (ANNs) Theory & Intuition.mp4

230.1 MB

1.1 Emotion AI Slides.pdf

3.2 MB

17. Task #16 - Understand Classifiers Key Performance Indicators (KPIs).srt

21.9 KB

9. Task #8 - Understand Convolutional Neural Networks and ResNets.mp4

133.2 MB

10. Task #9 - Build ResNet to Detect Key Facial Points.mp4

138.3 MB

1. Project Introduction and Welcome Message.srt

3.7 KB

5. Task #4 - Perform Images Augmentation.srt

27.6 KB

18. Task #17 - Assess Facial Expression Classifier Model.srt

21.6 KB

1. Project Introduction and Welcome Message.mp4

64.4 MB

2. Task #1 - Understand the Problem Statement & Business Case.mp4

124.7 MB

16. Task #15 - Build & Train a Facial Expression Classifier Model.srt

23.2 KB

1.2 Emotion AI Google Colab Notebook.html

0.1 KB

13. Task #12 - Import and Explore Facial Expressions (Emotions) Datasets.mp4

99.4 MB

15. Task #14 - Perform Image Augmentation.mp4

114.7 MB

11. Task #10 - Compile and Train Facial Key Points Detector Model.srt

11.8 KB

21. Task #20 - Serve Trained Model in TensorFlow 2.0 Serving.mp4

43.2 MB

17. Task #16 - Understand Classifiers Key Performance Indicators (KPIs).mp4

141.8 MB

16. Task #15 - Build & Train a Facial Expression Classifier Model.mp4

145.0 MB

8. Task #7 - Understand ANNs Training & Gradient Descent Algorithm.mp4

168.3 MB

20. Task #19 - Save Trained Model for Deployment.srt

15.0 KB

19. Task #18 - Make Predictions from Both Models 1. Key Facial Points & 2. Emotion.srt

11.6 KB

3. Task #2 - Import Libraries and Datasets.mp4

107.2 MB

14. Task #13 - Visualize Images for Facial Expression Detection.mp4

58.7 MB

9. Task #8 - Understand Convolutional Neural Networks and ResNets.srt

19.6 KB

2. Task #1 - Understand the Problem Statement & Business Case.srt

16.3 KB

20. Task #19 - Save Trained Model for Deployment.mp4

106.8 MB

10. Task #9 - Build ResNet to Detect Key Facial Points.srt

20.1 KB

12. Task #11 - Assess Trained ResNet Model Performance.srt

7.5 KB

15. Task #14 - Perform Image Augmentation.srt

20.5 KB

22. Task #21 - Deploy Both Models and Make Inference.mp4

92.8 MB

6. Task #5 - Perform Data Normalization and Scaling.srt

12.0 KB

4. Task #3 - Perform Image Visualizations.srt

15.2 KB

5. Task #4 - Perform Images Augmentation.mp4

148.7 MB

14. Task #13 - Visualize Images for Facial Expression Detection.srt

11.5 KB

18. Task #17 - Assess Facial Expression Classifier Model.mp4

109.6 MB

12. Task #11 - Assess Trained ResNet Model Performance.mp4

45.0 MB

13. Task #12 - Import and Explore Facial Expressions (Emotions) Datasets.srt

18.1 KB

21. Task #20 - Serve Trained Model in TensorFlow 2.0 Serving.srt

7.2 KB

6. Task #5 - Perform Data Normalization and Scaling.mp4

62.2 MB

19. Task #18 - Make Predictions from Both Models 1. Key Facial Points & 2. Emotion.mp4

63.0 MB

4. Task #3 - Perform Image Visualizations.mp4

91.6 MB

22. Task #21 - Deploy Both Models and Make Inference.srt

12.3 KB

3. Task #2 - Import Libraries and Datasets.srt

19.3 KB

8. Task #7 - Understand ANNs Training & Gradient Descent Algorithm.srt

27.7 KB

7. Task #6 - Understand Artificial Neural Networks (ANNs) Theory & Intuition.srt

31.9 KB

11. Task #10 - Compile and Train Facial Key Points Detector Model.mp4

71.4 MB

/4. AI in Healthcare/

1. Project Introduction and Welcome Message.srt

3.3 KB

1. Project Introduction and Welcome Message.mp4

60.8 MB

7. Task #6 - Train a Classifier Model To Detect Brain Tumors.mp4

211.1 MB

9. Task #8 - Understand ResUnet Segmentation Models Intuition.srt

21.3 KB

10. Task #9 - Build a Segmentation Model to Localize Brain Tumors.srt

22.1 KB

12. Task #11 - Assess Trained ResUNet Segmentation Model Performance.srt

19.2 KB

8. Task #7 - Assess Trained Classifier Model Performance.srt

14.1 KB

1.2 Healthcare AI Slides.pdf

4.6 MB

5. Task #4 - Understand the Intuition behind ResNet and CNNs.mp4

128.2 MB

4. Task #3 - Visualize and Explore Datasets.mp4

172.9 MB

5. Task #4 - Understand the Intuition behind ResNet and CNNs.srt

17.0 KB

3. Task #2 - Import Libraries and Datasets.mp4

112.3 MB

2. Task #1 - Understand the Problem Statement and Business Case.srt

24.6 KB

7. Task #6 - Train a Classifier Model To Detect Brain Tumors.srt

34.2 KB

11. Task #10 - Train ResUnet Segmentation Model.mp4

40.1 MB

1.1 AI in Healthcare Google Colab.html

0.1 KB

9. Task #8 - Understand ResUnet Segmentation Models Intuition.mp4

157.8 MB

10. Task #9 - Build a Segmentation Model to Localize Brain Tumors.mp4

143.4 MB

4. Task #3 - Visualize and Explore Datasets.srt

33.4 KB

11. Task #10 - Train ResUnet Segmentation Model.srt

6.1 KB

8. Task #7 - Assess Trained Classifier Model Performance.mp4

83.0 MB

2. Task #1 - Understand the Problem Statement and Business Case.mp4

184.5 MB

6. Task #5 - Understand Theory and Intuition Behind Transfer Learning.mp4

126.5 MB

3. Task #2 - Import Libraries and Datasets.srt

17.5 KB

6. Task #5 - Understand Theory and Intuition Behind Transfer Learning.srt

18.4 KB

12. Task #11 - Assess Trained ResUNet Segmentation Model Performance.mp4

134.9 MB

/2. Bonus Materials (Download now!)/

1. Link to Bonus Materials.html

1.7 KB

/6. AI In Business (Finance) & AutoML/

7. Task #5 - Understand the Theory & Intuition Behind XG-Boost Algorithm.mp4

223.0 MB

5. Task #3 - Visualize and Explore Dataset.srt

32.0 KB

1. Project Introduction and Welcome Message.srt

3.1 KB

11. Task #9 - Understand XG-Boost in AWS SageMaker.mp4

81.5 MB

10. Task #8 - Perform Grid Search and Hyper-parameters Optimization.srt

10.8 KB

7. Task #5 - Understand the Theory & Intuition Behind XG-Boost Algorithm.srt

33.3 KB

1. Project Introduction and Welcome Message.mp4

59.8 MB

9. Task #7 - Train XG-Boost Algorithm Using Scikit-Learn.mp4

74.9 MB

14. Task #12 - Train and Deploy Model Using AWS AutoPilot (Minimal Coding Required!).srt

22.6 KB

6. Task #4 - Clean Up the Data.mp4

58.3 MB

13. Task #11 - Deploy Model and Make Inference.mp4

113.1 MB

13. Task #11 - Deploy Model and Make Inference.srt

15.7 KB

2. Notes on Amazon Web Services (AWS).html

0.8 KB

1.2 UCI_Credit_Card.csv

2.9 MB

10. Task #8 - Perform Grid Search and Hyper-parameters Optimization.mp4

68.9 MB

3. Task #1 - Understand the Problem Statement & Business Case.srt

17.2 KB

1.3 AI in Finance.pdf

6.5 MB

5. Task #3 - Visualize and Explore Dataset.mp4

209.4 MB

1.1 AI In Business (Finance) & AutoML Google Colab.html

0.1 KB

1.4 AI in Finance - SageMaker AutoPilot.pdf

1.1 MB

6. Task #4 - Clean Up the Data.srt

9.3 KB

12. Task #10 - Train XG-Boost in AWS SageMaker.mp4

147.2 MB

8. Task #6 - Understand XG-Boost Algorithm Key Steps.mp4

215.5 MB

4. Task #2 - Import Libraries and Datasets.mp4

54.4 MB

12. Task #10 - Train XG-Boost in AWS SageMaker.srt

23.6 KB

14. Task #12 - Train and Deploy Model Using AWS AutoPilot (Minimal Coding Required!).mp4

128.8 MB

11. Task #9 - Understand XG-Boost in AWS SageMaker.srt

11.3 KB

8. Task #6 - Understand XG-Boost Algorithm Key Steps.srt

32.8 KB

4. Task #2 - Import Libraries and Datasets.srt

7.7 KB

9. Task #7 - Train XG-Boost Algorithm Using Scikit-Learn.srt

12.5 KB

3. Task #1 - Understand the Problem Statement & Business Case.mp4

110.6 MB

/

Download More Courses.html

0.2 KB

[TGx]Downloaded from torrentgalaxy.to.txt

0.6 KB

Important !! Course Resources Files.html

0.2 KB

/7. Creative AI/

1. Project Introduction and Welcome Message.srt

2.0 KB

1. Project Introduction and Welcome Message.mp4

38.9 MB

2. Task #1 - Understand the Problem Statement & Business Case.mp4

143.5 MB

10. Task #9 - Apply DeepDream Algorithm to Generate Images.mp4

70.1 MB

9. Task #8 - Implement Deep Dream Algorithm Part #2.mp4

126.6 MB

5. Task #4 - Run the Pre-trained Model and Explore Activations.srt

15.7 KB

1.3 Creative AI Google Colab.html

0.1 KB

3. Task #2 - Import Model with Pre-trained Weights.mp4

56.5 MB

4. Task #3 - Import and Merge Images.mp4

71.3 MB

11. Task #10 - Generate DeepDream Video.srt

11.1 KB

1.2 Creative AI.pdf

5.1 MB

6. Task #5 - Understand the Theory & Intuition Behind Deep Dream Algorithm.mp4

204.5 MB

8. Task #7 - Implement Deep Dream Algorithm Part #1.srt

15.4 KB

9. Task #8 - Implement Deep Dream Algorithm Part #2.srt

18.1 KB

7. Task #6 - Understand The Gradient Operations in TF 2.0.srt

8.9 KB

2. Task #1 - Understand the Problem Statement & Business Case.srt

14.0 KB

11. Task #10 - Generate DeepDream Video.mp4

81.6 MB

7. Task #6 - Understand The Gradient Operations in TF 2.0.mp4

39.3 MB

10. Task #9 - Apply DeepDream Algorithm to Generate Images.srt

11.4 KB

5. Task #4 - Run the Pre-trained Model and Explore Activations.mp4

89.2 MB

8. Task #7 - Implement Deep Dream Algorithm Part #1.mp4

87.1 MB

4. Task #3 - Import and Merge Images.srt

14.7 KB

6. Task #5 - Understand the Theory & Intuition Behind Deep Dream Algorithm.srt

31.4 KB

3. Task #2 - Import Model with Pre-trained Weights.srt

11.7 KB

/8. Explainable AI/

2. Introduction and Welcome Message.html

0.1 KB

1. Project Introduction and Welcome Message.srt

2.4 KB

1. Project Introduction and Welcome Message.mp4

41.5 MB

/9. Crash Course on AWS, S3, and SageMaker/

10. AWS SageMaker Studio Walk-through.srt

11.0 KB

7. AWS SageMaker Overview.mp4

67.8 MB

2. Key Machine Learning Components and AWS Tour.mp4

63.7 MB

8. AWS SageMaker Walk-through.srt

16.6 KB

5. EC2 and Identity and Access Management (IAM).mp4

113.5 MB

4. Amazon S3.mp4

116.8 MB

3. Regions and Availability Zones.mp4

55.5 MB

7. AWS SageMaker Overview.srt

13.7 KB

4. Amazon S3.srt

21.5 KB

9. AWS SageMaker Studio Overview.mp4

70.2 MB

3. Regions and Availability Zones.srt

9.0 KB

2. Key Machine Learning Components and AWS Tour.srt

14.0 KB

6. AWS Free Tier Account Setup and Overview.mp4

40.0 MB

1. What is AWS and Cloud Computing.mp4

71.4 MB

8. AWS SageMaker Walk-through.mp4

85.6 MB

11. AWS SageMaker Model Deployment.srt

15.5 KB

1. What is AWS and Cloud Computing.srt

12.1 KB

11. AWS SageMaker Model Deployment.mp4

116.2 MB

6. AWS Free Tier Account Setup and Overview.srt

8.8 KB

10. AWS SageMaker Studio Walk-through.mp4

54.0 MB

5. EC2 and Identity and Access Management (IAM).srt

19.1 KB

9. AWS SageMaker Studio Overview.srt

12.9 KB

/1. Introduction/

4. Get the Materials.html

0.4 KB

1. Introduction and Welcome Message.mp4

72.5 MB

3. Course Outline and Key Learning Outcomes.mp4

183.3 MB

3. Course Outline and Key Learning Outcomes.srt

24.9 KB

2. Introduction, Key Tips and Best Practices.srt

15.4 KB

2. Introduction, Key Tips and Best Practices.mp4

113.8 MB

1. Introduction and Welcome Message.srt

4.8 KB

/5. AI in Business (Marketing)/

6. Task #5 - Understand Theory and Intuition Behind K-Means Clustering Algorithm.srt

28.0 KB

2. Task #1 - Understand AI Applications in Marketing.srt

10.3 KB

5. Task #4 - Perform Exploratory Data Analysis (Part #2).srt

30.8 KB

1. Project Introduction and Welcome Message.srt

2.7 KB

8. Task #7 - Apply K-Means Clustering Algorithm.mp4

152.5 MB

1.3 AI in Marketing Slides.pdf

1.6 MB

8. Task #7 - Apply K-Means Clustering Algorithm.srt

25.0 KB

1. Project Introduction and Welcome Message.mp4

49.1 MB

1.1 AI in Business (Marketing) Google Colab.html

0.1 KB

10. Task #9 - Understand the Theory and Intuition Behind Auto-encoders.srt

12.8 KB

4. Task #3 - Perform Exploratory Data Analysis (Part #1).mp4

139.5 MB

7. Apply Elbow Method to Find the Optimal Number of Clusters.mp4

76.2 MB

9. Task #8 - Understand Intuition Behind Principal Component Analysis (PCA).srt

16.0 KB

3. Task #2 - Import Libraries and Datasets.mp4

111.7 MB

9. Task #8 - Understand Intuition Behind Principal Component Analysis (PCA).mp4

105.9 MB

5. Task #4 - Perform Exploratory Data Analysis (Part #2).mp4

191.8 MB

6. Task #5 - Understand Theory and Intuition Behind K-Means Clustering Algorithm.mp4

173.3 MB

7. Apply Elbow Method to Find the Optimal Number of Clusters.srt

13.2 KB

11. Task #10 - Apply Auto-encoders and Perform Clustering.mp4

141.9 MB

10. Task #9 - Understand the Theory and Intuition Behind Auto-encoders.mp4

87.1 MB

11. Task #10 - Apply Auto-encoders and Perform Clustering.srt

19.7 KB

3. Task #2 - Import Libraries and Datasets.srt

21.8 KB

4. Task #3 - Perform Exploratory Data Analysis (Part #1).srt

26.2 KB

2. Task #1 - Understand AI Applications in Marketing.mp4

77.3 MB

 

Total files 187


Copyright © 2024 FileMood.com