/1. Introduction and Housekeeping/
|
1. Introduction.mp4
|
3.8 MB
|
1.1 Machine Learning at AWS Introduction_WM.pdf.pdf
|
64.3 KB
|
2. Root Account Setup and Billing Dashboard Overview.mp4
|
6.2 MB
|
2.1 AWS HouseKeeping_WM.pdf.pdf
|
115.6 KB
|
3. Enable Access to Billing Data for IAM Users.mp4
|
10.2 MB
|
4. Create Users Required For the Course.mp4
|
27.1 MB
|
5. AWS Command Line Interface Tool Setup and Summary.mp4
|
7.6 MB
|
6. Six Advantages of Cloud Computing.mp4
|
31.8 MB
|
6.1 2018 AWSTop6ReasonsCloudComputing.pdf.pdf
|
107.9 KB
|
7. AWS Global Infrastructure Overview.mp4
|
42.0 MB
|
/10. 2019 SageMaker HyperParameter Tuning/
|
1. Downloadable Resources.html
|
0.2 KB
|
1.1 AWS SageMaker Hyperparameter Tuning.pdf.pdf
|
72.7 KB
|
1.2 FM-Autotuning-Lab-Configuration.xlsx.xlsx
|
10.9 KB
|
2. Introduction to Hyperparameter Tuning.mp4
|
44.4 MB
|
3. Lab Tuning Movie Rating Factorization Machine Recommender System.mp4
|
161.5 MB
|
4. Lab Step 2 Tuning Movie Rating Recommender System.mp4
|
50.5 MB
|
/11. AWS Machine Learning Service/
|
1. 2019 MARCH - Important Update AWS Machine Learning Service Deprecated.html
|
0.8 KB
|
10. Data Types supported by AWS Machine Learning.mp4
|
5.6 MB
|
11. Linear Regression Introduction.mp4
|
13.3 MB
|
12. Binary Classification Introduction.mp4
|
9.6 MB
|
13. Multiclass Classification Introduction.mp4
|
6.3 MB
|
14. Data Visualization - Linear, Log, Quadratic and More.mp4
|
18.3 MB
|
15. Algorithm and Terminology Quiz.html
|
0.2 KB
|
2. Python Development Environment and Boto3 Setup.mp4
|
15.7 MB
|
3. Project Source Code and Data Setup.mp4
|
10.5 MB
|
3.1 ProjectSetup.zip.zip
|
1.7 MB
|
4. Lab Intro to Python Jupyter Notebook Environment, Pandas, Matplotlib.mp4
|
33.3 MB
|
5. Lab AWS S3 Bucket Setup and Configure Security.mp4
|
18.9 MB
|
6. Summary.mp4
|
2.3 MB
|
7. Introduction and House Keeping Quiz.html
|
0.2 KB
|
8. Optional Machine Learning Where To Start (Article).html
|
6.6 KB
|
9. Machine Learning Terminology.mp4
|
7.4 MB
|
/12. Linear Regression/
|
1. Lab Linear Model, Squared Error Loss Function, Stochastic Gradient Descent.mp4
|
32.8 MB
|
2. Lab Linear Regression for complex shapes.mp4
|
12.0 MB
|
3. Summary.mp4
|
4.1 MB
|
4. Linear Regression Quiz.html
|
0.2 KB
|
/13. AWS - Linear Regression Models/
|
1. Lab Simple Training Data.mp4
|
16.2 MB
|
10. AWS Regression Metrics Quiz.html
|
0.2 KB
|
2. Lab Datasource.mp4
|
30.3 MB
|
3. Lab Train Model with default recipe.mp4
|
10.3 MB
|
4. AWS Models Quiz.html
|
0.2 KB
|
5. Concept - How to evaluate regression model accuracy.mp4
|
10.0 MB
|
6. Lab Evaluate predictive quality of the trained model.mp4
|
30.1 MB
|
7. Lab Review Default Recipe Settings Used To Train model.mp4
|
4.8 MB
|
8. Lab Train Model With Custom Recipe and Review Performance.mp4
|
23.1 MB
|
9. Model Performance Summary and Conclusion.mp4
|
5.3 MB
|
/14. Adding Features To Improve Model/
|
1. Lab Quadratic Fit Training Data.mp4
|
16.2 MB
|
2. Lab Underfitting With Linear Features.mp4
|
47.1 MB
|
3. Lab Normal Fit With Quadratic Features.mp4
|
28.6 MB
|
4. Summary.mp4
|
3.4 MB
|
/15. Normalization/
|
1. Lab Impact of Features With Different Magnitude.mp4
|
39.5 MB
|
2. Concept Normalization to smoothen magnitude differences.mp4
|
13.9 MB
|
3. Lab Train Model With Feature Normalizaton.mp4
|
24.1 MB
|
4. Summary.mp4
|
3.3 MB
|
5. Underfitting and Normalization Quiz.html
|
0.2 KB
|
/16. Adding Complex Features/
|
1. Lab Prepare Training Data.mp4
|
8.5 MB
|
2. Lab Adding Complex Features.mp4
|
5.0 MB
|
3. Lab Train Model With Higher Order Features.mp4
|
27.8 MB
|
4. Lab Performance Of Model With Degree 1 Features.mp4
|
7.3 MB
|
5. Lab Performance of Model with Degree 4 Features.mp4
|
6.9 MB
|
6. Lab Performance of Model With Degree 15 Features.mp4
|
3.9 MB
|
7. Summary.mp4
|
3.8 MB
|
/17. Kaggle Bike Hourly Rental Prediction/
|
1. Review Kaggle Bike Train Problem And Dataset.mp4
|
39.7 MB
|
2. Lab Train Model To Predict Hourly Rental.mp4
|
14.0 MB
|
3. Lab Evaluate Prediction Quality.mp4
|
24.2 MB
|
4. Linear Regression Wrapup and Summary.mp4
|
3.6 MB
|
/18. Logistic Regression/
|
1. Binary Classification - Logistic Regression, Loss Function, Optimization.mp4
|
20.6 MB
|
2. Lab Binary Classification Approach.mp4
|
20.6 MB
|
3. True Positive, True Negative, False Positive and False Negative.mp4
|
19.6 MB
|
4. Lab Logistic Optimization Objectives.mp4
|
13.2 MB
|
5. Lab Logistic Cost Function.mp4
|
7.8 MB
|
6. Lab Cost Example.mp4
|
9.6 MB
|
7. Optimizing Weights.mp4
|
9.7 MB
|
8. Summary.mp4
|
7.4 MB
|
9. Logistic Regression Quiz.html
|
0.2 KB
|
/19. Onset of Diabetes Prediction/
|
1. Problem Objective, Input Data and Strategy.mp4
|
23.5 MB
|
10. Lab Batch Prediction and Compute Metrics.mp4
|
23.8 MB
|
11. Summary.mp4
|
4.6 MB
|
12. Logistic Regression Metrics Quiz.html
|
0.2 KB
|
2. Lab Prepare For Training.mp4
|
9.0 MB
|
3. Lab Training a Classification Model.mp4
|
13.9 MB
|
4. Concept Classification Metrics.mp4
|
10.8 MB
|
5. Concept Classification Insights with AWS Histograms.mp4
|
13.2 MB
|
6. Concept AUC Metric.mp4
|
4.4 MB
|
7. Lab Review Diabetes Model Performance.mp4
|
18.9 MB
|
8. Lab Cutoff Threshold Interactive Testing.mp4
|
6.5 MB
|
9. Lab Evaluating Prediction Quality With Additional Dataset.mp4
|
20.9 MB
|
/2. 2019 SageMaker Housekeeping/
|
1. Downloadable Resources.html
|
0.2 KB
|
1.1 SourceCode and Data Setup.pdf.pdf
|
183.7 KB
|
1.2 AWS Introduction ML Concepts.pdf.pdf
|
273.3 KB
|
2. Demo - S3 Bucket Setup.mp4
|
21.6 MB
|
3. Demo - Setup SageMaker Notebook Instance.mp4
|
44.0 MB
|
4. 2019 Demo - Source Code and Data Setup.mp4
|
34.9 MB
|
/20. Multiclass Classifiers using Multinomial Logistic Regression/
|
1. Lab Iris Classifcation.mp4
|
22.1 MB
|
2. Lab Train Classifier with Default and Custom Recipe.mp4
|
24.8 MB
|
3. Concept Evaluating Predictive Quality of Multiclass Classifiers.mp4
|
5.2 MB
|
4. Concept Confusion Matrix To Evaluating Predictive Quality.mp4
|
10.4 MB
|
5. Lab Evaluate Performance of Iris Classifiers using Default Recipe.mp4
|
14.0 MB
|
6. Lab Evaluate Performance of Iris Classifiers using Custom Recipe.mp4
|
10.4 MB
|
7. Lab Batch Prediction and Computing Metrics using Python Code.mp4
|
28.3 MB
|
8. Summary.mp4
|
6.9 MB
|
/21. Text Based Classification with AWS Twitter Dataset/
|
1. AWS Twitter Feed Classification for Customer Service.mp4
|
15.3 MB
|
2. Lab Train, Evaluate Model and Assess Predictive Quality.mp4
|
30.4 MB
|
3. Lab Interactive Prediction with AWS.mp4
|
12.3 MB
|
4. Logistic Regression Summary.mp4
|
1.6 MB
|
/22. Data Transformation using Recipes/
|
1. Recipe Overview.mp4
|
8.9 MB
|
2. Recipe Example.mp4
|
10.7 MB
|
3. Text Transformation.mp4
|
13.9 MB
|
4. Numeric Transformation - Quantile Binning.mp4
|
4.9 MB
|
5. Numeric Transformation - Normalization.mp4
|
7.3 MB
|
6. Cartesian Product Transformation - Categorical and Text.mp4
|
4.1 MB
|
7. Summary.mp4
|
729.0 KB
|
/23. Hyper Parameters, Model Optimization and Lifecycle/
|
1. Introduction.mp4
|
1.1 MB
|
2. Data Rearrangement, Maximum Model Size, Passes, Shuffle Type.mp4
|
16.1 MB
|
3. Regularization, Learning Rate.mp4
|
6.0 MB
|
4. Regularization Effect.mp4
|
6.2 MB
|
5. Improving Model Quality.mp4
|
14.8 MB
|
6. Model Maintenance.mp4
|
13.9 MB
|
7. AWS Machine Learning System Limits.mp4
|
4.5 MB
|
8. AWS Machine Learning Pricing.mp4
|
5.2 MB
|
/24. Integration of AWS Machine Learning With Your Application/
|
1. Introduction.mp4
|
5.6 MB
|
10. Demo Allowing Prediction Only For Registered Users.mp4
|
3.7 MB
|
11. Cognito Overview.mp4
|
3.8 MB
|
12. Lab Cognito User Pool Configuration.mp4
|
20.6 MB
|
13. Lab AngularJS Web Client - Invoke Prediction for authorized users.mp4
|
44.0 MB
|
14. Lab Invoke Machine Learning Service From AWS EC2 Instance.mp4
|
16.8 MB
|
15. Summary.mp4
|
905.8 KB
|
2. Integration Scenarios.mp4
|
4.8 MB
|
3. Security using IAM.mp4
|
7.7 MB
|
4. Hands-on lab - List of Demos and Objective.mp4
|
5.1 MB
|
5. Lab Enable Real Time End Point and Configure IAM Prediction User.mp4
|
19.7 MB
|
6. Lab Invoking Prediction From AWS Command Line Interface.mp4
|
15.8 MB
|
6.1 aws_ml_command_line.txt.txt
|
0.6 KB
|
7. Lab Invoking Prediction From Python Client.mp4
|
11.0 MB
|
8. Lab Python Client to Train, Evaluate Models and Integrate with AWS.mp4
|
39.2 MB
|
9. Lab Invoking Prediction From Web Page AngularJS Client.mp4
|
21.4 MB
|
/25. Homework - Additional Problems/
|
1. Mushroom Classification.html
|
1.0 KB
|
1.1 MushroomData_Class.csv.csv
|
382.1 KB
|
/26. Conclusion/
|
1. BONUS Learn Advanced Data Processing Techniques, Cloud Computing and More.html
|
8.7 KB
|
2. Conclusion.mp4
|
1.3 MB
|
/3. 2019 Machine Learning Concepts/
|
1. 2019 Introduction to Machine Learning, Concepts, Terminologies.mp4
|
73.6 MB
|
2. 2019 Data Types - How to handle mixed data types.mp4
|
107.2 MB
|
3. 2019 Introduction to Python Notebook Environment.mp4
|
89.7 MB
|
4. 2019 Introduction to working with Missing Data.mp4
|
85.7 MB
|
5. 2019 Data Visualization - Linear, Log, Quadratic and More.mp4
|
39.6 MB
|
/4. 2019 SageMaker Service Overview/
|
1. Downloadable Resources.html
|
0.3 KB
|
1.1 AWS SageMaker_WM.pdf.pdf
|
226.6 KB
|
2. SageMaker Overview.mp4
|
14.5 MB
|
3. Compute Instance Families and Pricing.mp4
|
20.8 MB
|
4. Algorithms and Data Formats Supported For Training and Inference.mp4
|
10.0 MB
|
/5. XGBoost - Gradient Boosted Trees/
|
1. Introduction to XGBoost.mp4
|
76.1 MB
|
10. Demo - Training on SageMaker Cloud - Kaggle Bike Rental Model Version 3.mp4
|
133.4 MB
|
11. Demo - Invoking SageMaker Model Endpoints For Real Time Predictions.mp4
|
47.5 MB
|
12. Demo - Invoking SageMaker Model Endpoints From Client Outside of AWS.mp4
|
29.0 MB
|
13. How to remove SageMaker endpoints and Shutdown Notebook Instance.html
|
0.9 KB
|
13.1 20. How to remove SageMaker endpoints and Shutdown Notebook Instance.pdf.pdf
|
29.2 KB
|
14. Creating EndPoint From Existing Model Artifacts.html
|
0.5 KB
|
15. XGBoost Hyper Parameter Tuning.mp4
|
53.7 MB
|
16. Demo - XGBoost Multi-Class Classification Iris Data.mp4
|
85.8 MB
|
17. Demo - XGBoost Binary Classifier For Diabetes Prediction.mp4
|
47.4 MB
|
18. Demo - XGBoost Binary Classifier for Edible Mushroom Prediction.mp4
|
49.7 MB
|
19. Summary - XGBoost.mp4
|
13.9 MB
|
2. Source Code Overview.mp4
|
18.0 MB
|
3. Demo - Create Files in SageMaker Data Formats and Save Files To S3.mp4
|
66.2 MB
|
4. Demo - Working with XGBoost - Linear Regression Straight Line Fit.mp4
|
104.5 MB
|
5. Demo - XGBoost Example with Quadratic Fit.mp4
|
36.5 MB
|
6. Demo - Kaggle Bike Rental Data Setup, Exploration and Preparation.mp4
|
101.8 MB
|
7. Demo - Kaggle Bike Rental Model Version 1.mp4
|
100.8 MB
|
8. Demo - Kaggle Bike Rental Model Version 2.mp4
|
43.9 MB
|
9. Demo - Kaggle Bike Rental Model Version 3.mp4
|
37.2 MB
|
/6. SageMaker - Principal Component Analysis (PCA)/
|
1. Downloadable Resources.html
|
0.3 KB
|
1.1 AWS SageMakerPCA_WM.pdf.pdf
|
121.5 KB
|
10. Demo - PCA Projection with SageMaker.mp4
|
25.5 MB
|
11. Exercise Kaggle Bike Train and PCA.html
|
0.7 KB
|
12. Summary.mp4
|
7.0 MB
|
2. Introduction to Principal Component Analysis (PCA).mp4
|
55.1 MB
|
3. PCA Demo Overview.mp4
|
5.3 MB
|
4. Demo - PCA with Random Dataset.mp4
|
27.9 MB
|
5. Demo - PCA with Correlated Dataset.mp4
|
49.5 MB
|
6. Cleanup Resources on SageMaker.html
|
0.9 KB
|
7. Demo - PCA with Kaggle Bike Sharing - Overview and Normalization.mp4
|
34.4 MB
|
8. Demo - PCA Local Model with Kaggle Bike Train.mp4
|
32.0 MB
|
9. Demo - PCA training with SageMaker.mp4
|
40.6 MB
|
/7. SageMaker - Factorization Machines/
|
1. Downloadable Resources.html
|
0.3 KB
|
1.1 2. AWS SageMakerFactorizationMachine_WM.pdf.pdf
|
137.0 KB
|
2. Introduction to Factorization Machines.mp4
|
37.8 MB
|
3. MovieLens Dataset.html
|
0.3 KB
|
4. Demo - Movie Recommender Data Preparation.mp4
|
95.1 MB
|
5. Demo - Movie Recommender Model Training.mp4
|
51.4 MB
|
6. Demo - Movie Predictions By User.mp4
|
72.3 MB
|
/8. SageMaker - DeepAR Time Series Forecasting/
|
1. Downloadable Resources.html
|
0.3 KB
|
1.1 AWS SageMakerDeepAR_WM.pdf.pdf
|
180.2 KB
|
10. Demo - DeepAR Dynamic Features Training and Prediction.mp4
|
28.2 MB
|
11. Summary.mp4
|
11.5 MB
|
2. Introduction to DeepAR Time Series Forecasting.mp4
|
79.5 MB
|
3. DeepAR Training and Inference Formats.mp4
|
93.8 MB
|
4. Working with Time Series Data, Handling Missing Values.mp4
|
69.1 MB
|
5. Demo - Bike Rental as Time Series Forecasting Problem.mp4
|
110.1 MB
|
6. Demo - Bike Rental Model Training.mp4
|
81.0 MB
|
7. Demo - Bike Rental Prediction.mp4
|
51.0 MB
|
8. Demo - DeepAR Categories.mp4
|
67.7 MB
|
9. Demo - DeepAR Dynamic Features Data Preparation.mp4
|
70.9 MB
|
/9. 2019 Integration Options - Model Endpoint/
|
1. Downloadable Resources.html
|
0.1 KB
|
1.1 AWS SageMaker Integration.pdf.pdf
|
119.4 KB
|
1.2 Local Machine - Housekeeping.pdf.pdf
|
205.7 KB
|
2. Integration Overview.mp4
|
12.3 MB
|
3. Install Python and Boto3 - Local Machine.mp4
|
14.3 MB
|
4. Install SageMaker SDK, GIT Client, Source Code, Security Permissions.html
|
0.2 KB
|
4.1 Local Machine - Housekeeping.pdf.pdf
|
205.7 KB
|
5. Client to Endpoint using SageMaker SDK.mp4
|
80.7 MB
|
6. Client to Endpoint using Boto3 SDK.mp4
|
40.1 MB
|
7. Microservice - Lambda to Endpoint - Payload.mp4
|
24.8 MB
|
8. Microservice - Lambda to Endpoint.mp4
|
77.8 MB
|
9. Microservice - API Gateway, Lambda to Endpoint.mp4
|
88.2 MB
|
/
|
[Tutorialsplanet.NET].url
|
0.1 KB
|
Total files 215
|